Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-10T17:56:39.129Z Has data issue: false hasContentIssue false

Valence-Band Offset at the Zn-P Interface Between ZnSe and III-V Wide Gap Semiconductor Alloys: A First-Principles Investigation

Published online by Cambridge University Press:  10 February 2011

F. Bernardini
Affiliation:
Laboratory of Physics, Helsinki University of Technology, FIN-02150 Espoo, Finland
R. M. Nieminen
Affiliation:
Laboratory of Physics, Helsinki University of Technology, FIN-02150 Espoo, Finland
Get access

Abstract

We present a first-principles calculation of the valence-band offset at the (001) interface between ZnSe and III-V lattice-matched alloys based on Al, Ca, In, P elements, namely Al0.5In0. 5P and Ga0.1n0.5P. Among the different possible interface geometries we have focused on the P-terminated alloy in contact with the Zn-terminated ZnSe crystal. The results of this study show the existence of a very low band offset at the abrupt interface, both for the ideal geometry and for the relaxed atomic positions. The investigation of the electronic interface band structure reveals the presence of a low-lying half-filled interface band related to the Zn-P bond.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Park, R. M., Troffer, M. B., Rouleau, C. M., DePuydt, J. M., Haase, M. A., Appl. Phys. Lett. 57, 2127 (1990).Google Scholar
[2] Haase, M. A., Qiu, J., DePuydt, J. M., Cheng, H., Appl. Phys. Lett. 59, 1272 (1991)Google Scholar
[3] Fan, Y., Han, J., He, L., Saraie, J., Gunshor, R. L., Hagerrot, M., Jeon, H., Nurmikko, A. V., Hua, G. C., Otsuka, N., Appl. Phys. Lett. 61, 3160 (1992).Google Scholar
[4] Lansari, Y., Ren, J., Sneed, B., Bowers, K. A., Cook, J. W. Jr., Schetzina, J. F., Appl. Phys. Lett. 61, 2554 (1992)Google Scholar
[5] Pessa, M., Rakennus, K., Uusimaa, P., Savolainen, P., Salokatve, A., Phys. Stat. Sol. (b), 187, 337 (1995).Google Scholar
[6] Kobayashi, N., Appl. Phys. Lett. 55, 1235 (1989).Google Scholar
[7] Bratina, G., Vanzetti, L., Sorba, L., Biasiol, G., Franciosi, A., Peressi, M., Baroni, S., Phys. Rev. B, 50, 11723 (1994).Google Scholar
[8] Nicolini, R., Vanzetti, L., Mula, Guido, Bratina, G., Sorba, L., Franciosi, A., Peressi, M., Baroni, S., Resta, R., Baldereschi, A., Angelo, J. E., Gerberich, W. W., Phys. Rev. Lett. 72, 294 (1994).Google Scholar
[9] Ceperley, D. M., Alder, B. J., Phys. Rev. Lett. 45, 556 (1980).Google Scholar
[10] Perdew, J., Zunger, A., Phys. Rev. B, 23, 5048 (1981).Google Scholar
[11] Stumpf, R., Scheffier, M., Comp. Phys. Comm. 79, 447 (1994)Google Scholar
[12] Methfessel, M., Phys. Rev. B 38, 1537 (1988).Google Scholar
[13] Bachelet, C. B., Hamann, D. R., and Schluter, M., Phys. Rev. B 26, 4199 (1982);Google Scholar
[14] Louie, S. G., Froyen, S., Cohen, M. L., Phys. Rev. B, 26, 1738 (1982).Google Scholar
[15] Chadi, D. J., Cohen, M. L., Phys. Rev. B 8, 5747 (1973). Six k points are used for the (1 × 1) interface, 4 for the c(2 × 2).Google Scholar
[16] Baldereschi, A., Baroni, S., Resta, R., Phys. Rev. Lett. 61, 734 (1988).Google Scholar
[17] Van de Walle, C. G., Phys. Rev. B, 39, 1871 (1989).Google Scholar
[18] Krijn, M. P. C. M., Sem. Sci. Tech. 6, 27 (1991).Google Scholar
[19] Methfessel, M., Scheffier, M., Physica B, 172, 175 (1990)Google Scholar
[20] Continenza, A., Massidda, S., Phys. Rev. B, 50, 11949 (1994)Google Scholar
[21] Monkhorst, H. J., Pack, J. P., Phys. Rev. B, 13, 5188 (1976)Google Scholar
[22] Kley, A., Neugebauer, J., Phys. Rev. B, 50, 8616 (1994).Google Scholar