Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-21T21:05:32.020Z Has data issue: false hasContentIssue false

Ultrafast Dynamics of Highly Excited Dirac Fermions in Few-Layer Graphene: Evidence for Three-Particle Auger Scattering

Published online by Cambridge University Press:  31 January 2011

T Li
Affiliation:
fredltq@iastate.edu, Iowa State University, Department of Physics and Astronomy and Ames Laboratory, AMES, Iowa, United States
L Luo
Affiliation:
liangluo@iastate.edu, Iowa State University, Department of Physics and Astronomy and Ames Laboratory, AMES, Iowa, United States
M. Hupalo
Affiliation:
hupalo@ameslab.gov, Iowa State University, Department of Physics and Astronomy and Ames Laboratory, AMES, Iowa, United States
M C Tringides
Affiliation:
tringides@ameslab.gov, Iowa State University, Department of Physics and Astronomy and Ames Laboratory, AMES, Iowa, United States
Jigang Wang
Affiliation:
jwang@ameslab.gov, Iowa State University, Department of Physics and Astronomy and Ames Laboratory, AMES, Iowa, United States
Get access

Abstract

We present femtosecond differential reflectivity studies of few-layer graphene from weak to strong excitation regime. Temporal profiles of the differential reflectivity exhibit strong non-exponential decay. A nonlinear, cubic root dependence of their peak amplitudes on the pump fluence is clearly observed under relatively high intensity excitation, which indicates three-particle decay of transient carrier population via Auger scattering. Our results identify the critical role of such three-particle scattering in the initial electronic relaxation in photo-excited graphene with increasing phase-space filling of the correlated Dirac Fermions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Geim, A. K. A. K., , Novoselov, K. S., Nature Materials, 6, 183 (2007)Google Scholar
2 Hupalo, M., Conrad, E., and Tringides, M. C. Phys. Rev. B80, 041401 (2009).Google Scholar
3 Dawlaty, J. M.; Shivaraman, S.; Strait, J.; George, P.; Chandrashekhar, M.; Rana, F.; Spencer, M. G.; Veksler, D.; Chen Y. Appl. Phys. Lett. 93, 131905 (2008)Google Scholar
4 Dawlaty, J. M.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Appl. Phys. Lett. 92, 042116 (2008)Google Scholar
5 George, P.; Strait, J.; Dawlaty, J.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Nano. Lett. 8, 12, 42484251 (2008)Google Scholar
6 Choi, H.; Borondics, F.; Siegel, D. A.; Zhou, S. Y.; Martin, M. C.; Lanzara, A.; Kaindl, R. A. Appl. Phys. Lett. 94, 172102 (2009)Google Scholar
7 Sun, D. et al. , Phys. Rev. Lett 101, 157402 (2008).Google Scholar
8 Ghanassi, M. M., , et al. Appl. Phys. Lett, 62, 78 (2008)Google Scholar
9 Huang, L. et al. , Phys. Rev. Lett. 96, 057407 (2006).Google Scholar
10 Htoon, H. et al. , Phys. Rev. Lett. 91, 227401 (2003).Google Scholar
11 Bostwick, A., Ohta, T., Seyller, T., Horn, K., and Rotenberg, E., Nature Physics, 3, 36 (2007)Google Scholar
12 Rana, F. Phys Rev. B76 155431 (2007).Google Scholar