Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T20:48:09.887Z Has data issue: false hasContentIssue false

The two origins of p-type conduction in transparent conducting Ga-doped SnO2 thin films

Published online by Cambridge University Press:  20 June 2011

Huan-hua Wang*
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Tieying Yang
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Baoyi Wang
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Kurash Ibrahim
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Xiaoming Jiang
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Get access

Abstract

The p-type conduction in transparent Ga-doped SnO2 thin films was realized and its two origins were discerned through comparison experiments associated with growth conditions, Rutherford backscattering spectroscopy and x-ray photoelectron spectroscopy analysis. All the experiment results suggest that the adsorbed oxygen both in the grain boundaries and at the surfaces is another origin of the net hole conduction in the polycrystalline thin films. This mechanism provides a fairy well explanation for the growth temperature dependence of the p-type conductivities of the films. It also offers a useful guide to better the properties of p-type conducting oxide thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Shanghai Synchrotron Radiation Facility, Shanghai 201204, China

References

[1] Mao, Q., Ji, Z., Zhao, L., Phys. Status. Solidi B 247, 299 (2010).Google Scholar
[2] Bagheri-Mohagheghi, M.-M., Shahtahamasebi, N., Alinejad, M.R., Youssefi, A., Shokoon-Saremi, M., Solid State Sci. 11, 233 (2009).Google Scholar
[3] Huang, Y., Ji, Z., Chen, C., Appl. Surf. Sci. 253, 4819 (2007).Google Scholar
[4] Liu, M.-L., Wu, L.-B., Huang, F.-Q., Chen, L.-D., Chen, I.-W., J. Appl. Phys. 102, 116108 (2007)Google Scholar
[5] Manoj, P.K., Joseph, B., Vaidyan, V.K., , D.S.D. Amma, Ceram. Intern. 33, 273 (2007).Google Scholar
[6] Ji, Z., Zhao, L., He, Z., Zhou, Q., Chen, C., Mater. Lett. 60, 1387 (2006).Google Scholar
[7] Kim, H., Piqué, A., Appl. Phys. Lett. 84, 218 (2004).Google Scholar
[8] Ji, Z., He, Z., Song, Y., Liu, K., Ye, Z., J. Cryst. Growth. 259, 282 (2003).Google Scholar
[9] Dutta, S., Chattopadhyay, S., Sarkar, A., Chakrabarti, M., Sanyal, D., Jana, D., Prog. Mater. Sci. 54, 89 (2009)Google Scholar
[10] Jokela, S.J., McCluskey, M.D., Phys. Rev. Lett. 76, 193201 (2007)Google Scholar
[11] Zhang, S.B., We, S.-H., Zunger, A., Phys. Rev. B 63, 075205 (2001).Google Scholar
[12] Yang, T., Qin, X., Wang, H.-H., Jia, Q., Yu, R., Wang, B., Wang, J., Ibrahim, K., Jiang, X., He, Q., Thin Solid Films, 518, 5542 (2010).Google Scholar
[13] Zhao, J., Zhao, X.J., Ni, J.M., Tao, H.Z., Acta Mater. 58, 6243 (2010).Google Scholar
[14] Bagheri-Mohagheghi, M.-M., Shokoon-Saremi, M., Physica B 405, 4205 (2010).Google Scholar
[15] Tiurcio-Silver, A., Sánchez-Juárez, A., Mat. Sci. Eng. B 110, 268 (2004).Google Scholar
[16] Sahm, T., Gurlo, A., Barsan, N., Weimar, U., Sensors and Actuators 118, 78 (2006)Google Scholar
[17] Suzuki, T., J. Appl. Phys. 88, 6881 (2000).Google Scholar
[18] Sundqvist, J., Lu, J., Ottosson, M., Hårsta, A., Thin Solid Film 514, 63 (2006).Google Scholar
[19] Yeh, J.J. Lindau, Atomic Data and Nuclear Data Tables 32, 1 (1985).Google Scholar