Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-29T19:52:26.842Z Has data issue: false hasContentIssue false

Towards Monodomains of Self-Organized Comb-Shaped Polymeric Supramolecules

Published online by Cambridge University Press:  10 February 2011

Olli Ikkala
Affiliation:
Department of Engineering Physics and Mathematics and Center for New Materials, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Espoo, Finland
Gerrit ten Brinke
Affiliation:
Laboratory of Polymer Chemistry, Dutch Polymer Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Get access

Abstract

We have previously shown that hierarchical self-organization is achieved upon physically bonding amphiphilic molecules to diblock copolymers. Here we discuss the effect of imposed shear flow to achieve overall alignment of the locally self-organized structures. We will first present shear aligned polystyrene-block-poly(4-vinyl pyridine) diblock copolymers (PS-b-P4VP), where pentadecyl phenol (PDP) has been hydrogen bonded to the pyridines. Depending on the selected molecular weights, eg. hexagonal arrangement of PS cylinders in the lamellar matrix of P4VP(PDP) can be obtained with high overall order of both structures. This is a template to obtain discrete PS nanorods, which have P4VP corona once the PDP molecules have been cleaved off by a solvent treatment. Selecting a relatively high molecular weight PS block and a short P4VP block leads to mesoporous materials with emptied cylinders with P4VP brushes at the walls. The glassy state of the PS matrix prevents the pores from collapsing. The pyridine groups of PS-b-P4VP can be protonated using eg. toluene sulphonic acid and the resulting polymeric salt has been complexed using PDP. The weight fractions have been selected so that the polyelectrolyte/amphiphile complex self-organizes into cylindrical domains with hexagonal packing. Shear alignment leads to high overall order. SAXS in combination with structural models suggests that within the cylinders there are parallel self-organized layers. The conductivity is anisotropic. We will also discuss dielectric reflectors based on self-organized block polyelectrolytes consisting PS-b-P4VP where DBSA has been complexed to P4VP. In this case, plasticization due to the oligomeric side chains promotes a facile structure formation at long periodicities in comparison to concepts based on eg. blends of high molecular weight polymers and block copolymers. Finally, plasticized comb-shaped supramolecules based on rigid conjugated poly(p-pyridine) are discussed. Even gentle shearing leads to highly aligned lamellar structures, which show efficient polarized photoluminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Whitesides, G.M., Mathias, J. P. and Seto, C. T., Science 254, p. 1312 (1991).Google Scholar
2. Muthukumar, M., Ober, C. K. and Thomas, E. L., Science 277, p. 1225 (1997).Google Scholar
3. Bates, F. S. and Fredrickson, G. H., Physics Today 52, p. 32 (1999).Google Scholar
4. Hamley, I. W. (1998) The physics of block copolymers. Oxford University Press, Oxford Google Scholar
5. Goldacker, T., Abetz, V., Stadler, R., Erukhimovich, I. and Leibler, L., Nature 398, p. 137 (1999).Google Scholar
6. Fischer, H. and Poser, S., Acta Polymer 47, p. 413 (1996).Google Scholar
7. Stupp, S. I., LeBonheur, V.,Walker, K., Li, L. S., Huggins, K. E.,Keser, M. and Amstutz, A., Science 276, p. 384 (1997).Google Scholar
8. Jenekhe, S. and Chen, X. L., Science 283, p. 372 (1999).Google Scholar
9. Antonietti, M., Conrad, J. and Thünemann, A., Macromolecules 27, p. 6007 (1994).Google Scholar
10. Antonietti, M., Henke, S. and Thünemann, A., Advanced Materials 8, p. 41 (1996).Google Scholar
11. Ober, C. K. and Wegner, G., Adv. Mat. 9, p. 17 (1997).Google Scholar
12. Thünemann, A. F., Prog. Polym. Sci. 27, p. 1473 (2002).Google Scholar
13. Ruokolainen, J., Brinke, G. ten, Ikkala, O., Torkkeli, M. and Serimaa, R., Macromolecules 29, p. 3409 (1996).Google Scholar
14. Ruokolainen, J., Tanner, J., Ikkala, O., ten, G. Brinke and Thomas, E. L., Macromolecules 31, p. 3532 (1998).Google Scholar
15. Ruokolainen, J., Mäkinen, R., Torkkeli, M., Serimaa, R., Mäkelä, T., Brinke, G. ten and Ikkala, O., Science 280, p. 557 (1998).Google Scholar
16. Ruokolainen, J., Brinke, G. ten and Ikkala, O. T., Adv. Mat. 11, p. 777 (1999)Google Scholar
17. Ikkala, O. and Brinke, G. ten, Science 295, p. 2407 (2002)Google Scholar
18. Ruokolainen, J., Tanner, J., Brinke, G. ten, Ikkala, O., Torkkeli, M. and Serimaa, R., Macromolecules 28, p. 7779 (1995)Google Scholar
19. Valkama, S., Ruotsalainen, T., Kosonen, H., Ruokolainen, J., Torkkeli, M., Serimaa, R., Brinke, G. ten and Ikkala, O., Macromolecules, in press p. (2003).Google Scholar
20. Ikkala, O., L.O. Pietilä, Cao, Y. and Andreatta, A. (filed 1993, granted 1998) U.S.Patent 5,783,111.Google Scholar
21. Kosonen, H., Ruokolainen, J., Knaapila, M., Torkkeli, M., Jokela, K., Serimaa, R., Brinke, G. ten, Bras, W., Monkman, A. P. and Ikkala, O., Macromolecules 33, p. 8671 (2000)Google Scholar
22. Knaapila, M.,Torkkeli, M., Horsburgh, L. E., Pålsson, L.O., Jokela, K., Serimaa, R., Brinke, G. ten, Monkman, A. P. and Ikkala, O., Appl. Phys. Lett. 81, p. 1489 (2002)Google Scholar
23. Kato, T. and Fréchet, J. M. J., Macromolecules 22, p. 3818 (1989)Google Scholar
24. Kato, T., Kubota, Y., Uryu, T. and Ujiie, S., Angew. Chem. Int. Ed. Engl. 36, p. 1617 (1997)Google Scholar
25. Bazuin, C. G. and Brandys, F. A., Chem. Mater. 4, p. 970 (1992)Google Scholar
26. Brandys, F. A. and Bazuin, C. G., Chem. Mater. 8, p. 83 (1996)Google Scholar
27. Mäki-Ontto, R., Moel, K. de, Odorico, W. de, Ruokolainen, J., Stamm, M., Brinke, G. ten and Ikkala, O., Adv. Mat. 13, p. 117 (2001)Google Scholar
28. Kosonen, H., Valkama, S., Ruokolainen, J.,Torkkeli, M., Serimaa, R., ten, G. Brinke and Ikkala, O., Eur. Phys. J. 10, p. 69 (2003)Google Scholar
29. Mansky, P., DeRouchey, I. J., Russell, T. P., Mays, J., Pitsikalis, M., Morkved, T. and Jaeger, H., Macromolecules 31, p. 4399 (1998)Google Scholar
30. Thurn-Albrecht, T., Schotter, J., Kästle, G. A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C. T., Tuominen, M. T. and Russell, T. P., Science 290, p. 2126 (2000)Google Scholar
31. Böker, A., Elbs, H., Hansel, H., Knoll, A., Ludwigs, S., Zettl, H., Urban, V., Abetz, V., E, A. H.. Muller and Krausch, G., Phys. Rev. Lett. 89, p. 135502/1 (2002).Google Scholar
32. Böker, A., Knoll, A., Elbs, H., Abetz, V., Mueller, A. H. E. and Krausch, G., Macromolecules 35, p. 1319 (2002)Google Scholar
33. Chen, Z.R., Kornfield, J. A., Smith, S. D., Grothaus, J. T. andSatkowski, M.M., Science 277, p. 1248 (1997)Google Scholar
34. Sänger, J., Gronski, W., Leist, H. and Wiesner, U., Macromolecules 30, p. 7621 (1997)Google Scholar
35. Mäkinen, R., Ruokolainen, J., Ikkala, O., Moel, K. de, Brinke, G. ten, Odorico, W. De and Stamm, M., Macromolecules 33, p. 3441 (2000)Google Scholar
36. Mäki-Ontto, R., Moel, K. de, Polushkin, E., Alberda van Ekenstein, G., Brinke, G. ten and Ikkala, O., Adv. Mat. 14, p. 357 (2002)Google Scholar
37. Moel, K. de, Mäki-Ontto, R., Stamm, M., Ikkala, O. and Brinke, G. ten, Macromolecules 34, p. 2892 (2001)Google Scholar
38. Ekenstein, G. Alberda van, Polushkin, E., Nijland, H., Ikkala, O. and Brinke, G. G. ten, Macromolecules, accepted p. (2003).Google Scholar
39. Polushkin, E., Ekenstein, G. Alberda van, Dolbnya, I., Bras, W., Ikkala, O. and Brinke, G. ten, Macromolecules, accepted p. (2003).Google Scholar
40. Ruokolainen, J., Torkkeli, M., Serimaa, R., Vahvaselkä, S., Saariaho, M., Brinke, G. ten and Ikkala, O., Macromolecules 29, p. 6621 (1996)Google Scholar
41. Ruotsalainen, T., Torkkeli, M., Serimaa, R., Mäkelä, T., Mäki-Ontto, R., Ruokolainen, J., Brinke, G. ten and Ikkala, O., Macromolecules, submitted p. (2003).Google Scholar
42. Cho, G., Park, K.P., Jang, J., Jung, S., Moon, J. and Kim, T., Electrochem. Comm. 4, p. 336 (2002)Google Scholar
43. Fink, Y., Urbas, A. M., Bawendi, M. G., Joannopoulos, J. D. and Thomas, E. L., Lightwave, J. Technol. 17, p. 1963 (1999)Google Scholar
44. Edrington, A. C., Urbas, A. M., DeRege, P., Chen, C. X., Swager, T.M., Hadjichristidis, N., Xenidou, M., Fetters, L. J., Joannopoulos, J. D., Fink, Y. and Thomas, E. L., Adv. Mater. 13, p. 421 (2001)Google Scholar
45. Monkman, A. P.,Halim, M., Dailey, S., Samuel, I. D. W.,Sluch, M. and Horsburgh, L. E., Proc. SPIE-Int. Soc. Opt. Eng. 3145, p. 208 (1997)Google Scholar
46. Monkman, A. P., Halim, M., Samuel, I. D. W. and Horsburgh, L. E., J. Chem. Phys. 109, p. 10372 (1998)Google Scholar