Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T19:48:43.906Z Has data issue: false hasContentIssue false

Tie Effect of Rare-Earth Elements on the Entroy of Radiation Defects Ionization in N-Type Go

Published online by Cambridge University Press:  21 February 2011

V.V. Petrov
Affiliation:
Byelarusian State University, Physics Department, Minsk, Republic Belarus'
T.D. Kharohenko
Affiliation:
Byelarusian State University, Physics Department, Minsk, Republic Belarus'
V.Yu. Yavid
Affiliation:
Byelarusian State University, Physics Department, Minsk, Republic Belarus'
Get access

Abstract

Te analyses of the processes of radiation defect formation in germanium doped with phosphorus in the presence of rare-earth element neodimium and without it has been carried out.It has been shown that the presence of neodimium in n-Ge results in the change of enthalpy and entropy of the major radiation defect ionization (complex with the level being near EB-0.20 eV). The change of enthalpy by 0.03-0.04 eV as well as more than six fold increase of entropy of the complex ionization in Ge:Nd has been stated to be connected with the local deformation of the lattice around defect formed in the process of irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Salmanov, A.R., Aleksandrova, G.I., Voronkova, G.I. et al. , Izv. Akad. Nauk SSSR, Ser.Neorg. Mater. 14, 85 (1978).Google Scholar
2. Movchan, E.O., Bondar, M.M., Ukrain. Fiz. Zh. 8, 496 (1963).Google Scholar
3. Levinzon, D.I., Sachkov, G.V., Smirnov, Yu.M., Shershel, V.A., Izv. Akad. Nauk SSSR, Ser.Neorg. Mater. 4, 280 (1968).Google Scholar
4. Baransky, N.I., Badakov, V.V., Levinzon, D.I., Izv. Akad. Nauk SSSR, Ser.Neorg. Mater. 3, 1259 (1967).Google Scholar
5. Mandelkorn, J., Schwarts, L., Broder, J., Kautz, H., Ulman, R., J. Appl. Phys. 35, 2258 (1964).Google Scholar
6. Petrov, V.V., Prosolovich, V.S., Tsyrulkevich, G.S., Karpov, Yu.A., Izv. Akad. Nauk SSSR, Ser.Neorg. Mater. 23, 1386 (1987).Google Scholar
7. Karpov, Yu.A., Mazurenko, V.V., Petrov, V.V., Prosolovich, V.S., Tkachev, V.D., Fiz. Tekdh. Poluprovodn. 18, 368 (1984).Google Scholar
8. Mashovets, T.V., Fkntsev, V.V., Abdurakhmanova, S.N., Fiz. Tekh. Poluprovodn. 8, 96 (1974).Google Scholar
9. Hoffmann, H.J., Appl. Phys. 19, 307 (1979).Google Scholar
10. Makarenko, L.F., Markevich, V.P., Murmn, L.I., Fiz. Tekh. Poluprovodn. 19, 1935 (1985).Google Scholar
11. Bourgoin, J., Lannoo, M., Point Defects in Semioonduotors II. Experimental aspects, (Springer-Verlag, Berlin, Heidelberg, New York, 1983), p.174.Google Scholar
12. Voronkov, V.V., Fiz. Tekh. Poluprovodn. 5, 920 (1971).Google Scholar
13. Tkaohev, V.D., Urenev, V.I., Fiz. Tekh. Poluprovodn. 5, 1516 (1971).Google Scholar
14. Golubev, V.G., Ivanov-Omsky, V.I., Kropotov, G.I., Fiz. Tverd. Tela, 24, 3410 (1982).Google Scholar
15. Burton, J.A., Prim, R.C., Slichter, W.P., J. Chem. Phys. 21, 1987 (1953).Google Scholar
16. Kodera, H., Japan J. Appl. Phys. 2, 212, (1963).Google Scholar