Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-5wlnc Total loading time: 0.193 Render date: 2021-07-31T05:13:59.601Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Three-dimensional Structure of Twinned and Zigzagged One-dimensional Nanostructures Using Electron Tomography

Published online by Cambridge University Press:  01 February 2011

Han Sung Kim
Affiliation:
rhymesterkim@empal.com, Korea University, Materials chemistry, Jochiwon, Korea, Republic of
Yoon Myung
Affiliation:
qoouni@korea.ac.kr, Korea University, Material Chemistry, Anam-dong Seongbuk-Gu, Seoul, Seongbuk-gu, 136-701 Korea, Korea, Republic of, 82-2-3290-3973, 82-2-3290-3992
Yong Jae Cho
Affiliation:
valunus@nate.com, Korea University, Materials Chemistry, Jochiwon, Korea, Republic of
Dong Myung Jang
Affiliation:
wavejd2@naver.com, Korea University, Materials Chemistry, Jochiwon, Korea, Republic of
Chan Soo Jung
Affiliation:
dear6110@naver.com, Korea University, Materials Chemistry, Jochiwon, Korea, Republic of
Jae-Pyoung Ahn
Affiliation:
jpahn@kist.re.kr, Korea Institute of Science and Technology, Advanced Analysis Center, Seoul, Korea, Republic of
Jeunghee Park
Affiliation:
parkjh@korea.ac.kr, United States
Get access

Abstract

Electron tomography and high-resolution transmission electron microscopy were used to characterize the unique 3-dimensional (3D) structures of twinned Zn3P2 (tetragonal) and InAs (zinc blende) nanowires synthesized by the vapor transport method. The Zn3P2 nanowires adopt a unique superlattice structure that consists of twinned octahedral slice segments having alternating orientations along the axial [111] direction of a pseudocubic unit cell. The apices of the octahedral slice segment are indexed as six equivalent <112> directions at the [111] zone axis. At each 30 degrees turn, the straight and zigzagged morphologies appear repeatedly at the <112> and <011> zone axes, respectively. The 3D structure of the twinned Zn3P2 nanowires is virtually the same as that of the twinned InAs nanowires. In addition, we analyzed the 3D structure of zigzagged CdO (rock salt) nanowires and found that they include hexahedral segments, whose six apices are matched to the <011> directions, linked along the [111] axial direction. We also analyzed the unique 3D structure of rutile TiO2 (tetragonal) nanobelts; at each 90 degree turn, the straight morphology appears repeatedly, while the in-between twisted form appears at the [011] zone axis. We suggest that the TiO2 nanobelts consist of twinned octahedral slices whose six apices are indexed by the <011>/<001> directions with the axial [010] direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hu, J.; Odom, T. W. Lieber, C. M. Acc. Chem. Res. 1999, 32, 435.CrossRefGoogle Scholar
2 Johansson, J. Karlsson, L. S. Svensson, C. P. T. Mårtensson, T. Wacaser, B. A. Deppert, K.; Samuelson, L. Seifert, W. Nature Mater. 2006, 5, 574.CrossRefGoogle Scholar
3 Verheijen, M. A. Immink, G. de Smet, T. Borgström, M. T. Bakkers, E. P. A. M. J. Am. Chem. Soc. 2006, 128, 1353.CrossRefGoogle Scholar
4 Tian, M. Wang, J. Kurtz, J. Mallouk, T. E. Chan, M. H. W. Nano Lett. 2003, 3, 919.CrossRefGoogle Scholar
5 Li, Q. Gong, X. Wang, C. Wang, J. Ip, K. Hark, S. Adv. Mater. 2004, 16, 1436.CrossRefGoogle Scholar
6 Davidson, F. M. III, Wiacek, R. Korgel, B. A. Chem. Mater. 2005, 17, 230.CrossRefGoogle Scholar
7 Chen, H. Wang, J. Yu, H. Yang, H. Xie, S. Li, J. J. Phys. Chem. B 2005, 109, 2573.CrossRefGoogle ScholarPubMed
8 Ross, F. M. Tersoff, J. Reuter, M. C. Phys. Rev. Lett. 2005, 95, 146104.CrossRefGoogle Scholar
9 Ding, Y. Wang, Z. L. Sun, T. Qiu, J. Appl. Phys. Lett. 2007, 90, 153510.CrossRefGoogle Scholar
10 Xiong, Q. Wang, J. Eklund, P. C. Nano Lett. 2006, 6, 2736.CrossRefGoogle Scholar
11 Han, W. –Q.; Wu, L. Stein, A. Zhu, Y. Misewich, J. Warren, J. Angew. Chem. Int. Ed. 2006, 45, 6554.CrossRefGoogle Scholar
12 Shen, G. Chen, P.–C.; Bando, Y. Golberg, D. Zhou, C. J. Phys. Chem. C. 2008, 112, 16405.CrossRefGoogle ScholarPubMed
13 Wang, D.-H.; Xu, D. Wang, Q. Hao, Y.–J.; Jin, G.–Q.; Guo, X.–Y.; Tu, K. N. Nanotech. 2008, 19, 215602.CrossRefGoogle Scholar
14 Tao, X. Li, X. Nano Lett. 2008, 8, 505.CrossRefGoogle Scholar
15 Bao, J. Bell, D. C. Capasso, F. Wagner, J. B. Mårtensson, T. Trägårdh, J. Samuelson, L. Nano Lett. 2008, 8, 836.CrossRefGoogle Scholar
16 Meng, Q. Jiang, C. Mao, S. X. J. Cryst. Growth 2008, 310, 4481.CrossRefGoogle Scholar
17 Fu, X. Jiang, J. Zhang, W. Yuan, J. Appl.Phys. Lett. 2008, 93, 043101.CrossRefGoogle Scholar
18 Yin, L. W. Lee, S. T. Nano Lett. 2009, 9, 957.CrossRefGoogle Scholar
19 Wang, Z. W. Li, Z. Y. Nano Lett. 2009, 9, 1467.CrossRefGoogle Scholar
20 Yang, Y. Scholz, R. Fan, H. J. Hesse, D. Gösele, U. Zacharias, M. ACS Nano 2009, 3, 555.CrossRefGoogle Scholar
21 Shen, X. S. Wang, G. Z. Hong, X. Xie, X. Zhu, W. Li, D. P. J. Am. Chem. Soc. 2009, 131, 10812.CrossRefGoogle Scholar
22 Dayeh, S. A. Susac, D. Kavanagh, K. L. Yu, E. T. Wang, D. Adv. Funct. Mater. 2009, 19, 2102.CrossRefGoogle Scholar
23 Ikoniæ, Z.; Srivastava, G. P. Inkson, J. C. Phys. Rev. B 1993, 48, 17181.CrossRefGoogle Scholar
24 Verheijen, M. A. Algra, R. E. Borgström, M. T. Immink, G. Sourty, E. van Enckevort, W. J. P.; Vlieg, E. Bakkers, E. P. A. M. Nano Lett. 2007, 7, 3051.CrossRefGoogle Scholar
25 Han, Y. Zhao, L. Ying, J. Y. Adv. Mater. 2007, 19, 2454.CrossRefGoogle Scholar
26 Kim, H. S. Hwang, S. O. Myung, Y. Park, J. Bae, S. Y. Ahn, J. P. Nano Lett. 2008, 8, 551.CrossRefGoogle Scholar
27 Arslan, I. Talin, A. A. Wang, G. T. J. Phys. Chem. C. 2008, 112, 11093.CrossRefGoogle Scholar
28 Ersen, O. Bégin, S. Houlle, M. Amadou, J. Janowska, I. Greneche, J.–M; Crucifix, C. Pham-Huu, C. Nano Lett. 2008, 8, 1033.CrossRefGoogle Scholar
29 Heigoldt, M. Arbiol, J. Spirkoska, D. Rebled, J. M. Conesa-Boj, S. Abstreiter, G. Peiró, F.; Morante, J. R. Fontcuberta i Morral, A. J. Mater. Chem. 2009, 19, 840.CrossRefGoogle Scholar
30 Arslan, I. Tong, J. R. Midgley, P. A. Ultramicroscopy 2006, 106, 994.CrossRefGoogle Scholar
31 Zdanowicz, W. Kloc, K. Kaliñska, A. Cisowska, E. Burian, A. J. Cryst. Growth 1975, 31, 56.CrossRefGoogle Scholar
32 Zanin, I. E. Aleinikova, K. B. Afanasiev, M. M. Antipin, M. Y. J. Struct. Chem. 2004, 45, 844.CrossRefGoogle Scholar
33 Shen, G. Bando, Y. Ye, C. Yuan, X. Sekiguchi, T. Golberg, D. Angew. Chem. Int. Ed. 2006, 45, 7568.CrossRefGoogle Scholar
34 Yang, R. Chueh, Y.–L.; Morber, J. R. Snyder, R. Chou, L.–J.; Wang, Z. L. Nano Lett. 2007, 7, 269.CrossRefGoogle Scholar
35 Liu, C. Dai, L. You, L. P. Xu, W. J. Ma, R. M. Yang, W. Q. Zhang, Y. F. Qin, G. G. J. Mater. Chem. 2008, 18, 3912.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Three-dimensional Structure of Twinned and Zigzagged One-dimensional Nanostructures Using Electron Tomography
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Three-dimensional Structure of Twinned and Zigzagged One-dimensional Nanostructures Using Electron Tomography
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Three-dimensional Structure of Twinned and Zigzagged One-dimensional Nanostructures Using Electron Tomography
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *