Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-19T18:11:57.956Z Has data issue: false hasContentIssue false

A Thermogravimetric Study of Alakanethiolate Monolayer-Capped Gold Nanoparticle Catalysts

Published online by Cambridge University Press:  01 February 2011

Mathew M. Maye
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902.
Sandy Chen
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902.
Wai-Ben Chan
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902.
Lingyan Wang
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902.
Peter Njoki
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902.
I-Im-. S. Lim
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902.
Jennifer Mitchell
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902.
Li Han
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902.
Jin Luo
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902.
Chuan-Jian Zhong
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902.
Get access

Abstract

The application of molecularly-capped gold nanoparticles (1–5 nm) in catalysis (e.g., electrocatalytic oxidation of CO and methanol) requires a thorough understanding of the surface composition and structural properties. Gold nanoparticles consisting of metallic or alloy cores and organic encapsulating shells serve as an intriguing model system. One of the challenges for the catalytic application is the ability to manipulate the core and the shell properties in controllable ways. There is a need to understand the relative core-shell composition and the ability to remove the shell component under thermal treatment conditions. In this paper, we report results of a thermogravimetric analysis of the alkanethiolate monolayer-capped gold nanoparticles. This investigation is aimed at enhancing our understanding of the relative core-shell composition and thermal profiles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Maye, M. M., Luo, J., Han, L., Kariuki, N. N., Zhong, C. J., Gold Bulletin, 36, 75 (2003).Google Scholar
2. (b) Bond, G.C., Thompson, D. T., Gold Bulletin, 33, 41 (2000).Google Scholar
3. (a) Sanchez, A., Abbet, S., Heiz, U., Schneider, W.-D., Hakkinen, H., Barnett, R.N., Landman, U., J. Phys. Chem. A, 103, 9573 (1999).Google Scholar
(b) Yoo, J.W., Hathcock, D., El-Sayed, M.A., J. Phys. Chem. A, 106, 2049 (2002).Google Scholar
(c) Wallace, W.T., Whetten, R.L., J. Am. Chem. Soc., 124, 7499 (2002).Google Scholar
4. Schmid, G., Emde, S., Maihack, V., Meyer-Zaika, W., Peschel, S., J. Mol. Catal. A– Chem., 107, 95 (1996)Google Scholar
5. Haruta, M., Catal. Today, 36, 153 (1997).Google Scholar
(b) Haruta, M., Date, M., Appl. Catal. A–Gen., 222, 427 (2001).Google Scholar
(c) Valden, M., Lai, X., Goodman, D.W., Science, 281, 1647 (1998).Google Scholar
6. Maye, M.M., Lou, Y.B., Zhong, C.J., Langmuir, 16, 7520 (2000).Google Scholar
(b) Lou, Y. B., Maye, M.M., Han, L., Luo, J., Zhong, C.J., Chem. Commun., 473, (2001).Google Scholar
(c) Luo, J., Lou, Y., Maye, M.M., Zhong, C.J., Hepel, M., Electrochem. Commun., 3, 172, (2001).Google Scholar
7. Zhong, C.J., Maye, M.M., Adv. Mater., 13, 1507 (2001).Google Scholar
(b) Luo, J., Maye, M.M., Lou, Y.B., Han, L., Hepel, M., Zhong, C.J., Catal. Today, 77, 127138 (2002).Google Scholar
8. Luo, J., Jones, V. W., Maye, M. M., Han, L., Kariuki, N. N., Zhong, C. J., J. Amer. Chem. Soc., 124, 13988, (2002).Google Scholar
9. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R., J. Chem. Soc., Chem. Comm., 801. (1994)Google Scholar
10. (a) Maye, M.M., Zheng, W.X., Leibowitz, F.L., Ly, N.K., Zhong, C.J., Langmuir, 16, 490 (2000).Google Scholar
(b) Maye, M.M., Zhong, C.J., J. Mater. Chem., 10, 1895 (2000).Google Scholar
11. (a) Leibowitz, F.L., Zheng, W.X., Maye, M.M., Zhong, C.J., Anal. Chem., 71, 5076, (1999).Google Scholar
(b) Han, L., Maye, M.M., Leibowitz, F.L., Ly, N.K., Zhong, C.J., J. Mater. Chem., 11, 1258 (2001).Google Scholar
12. Waters, C.A., Mills, A.J., Johnson, K.A., Schiffrin, D.J., Chem. Commun., 4, 540 (2003).M.J.Google Scholar
13. Hostetler, , Wingate, J.E., Zhong, C.J., Harris, J.E., Vachet, R.W., Clark, M.R., Londono, J.D., Green, S.J., Stokes, J.J., Wignall, G.D., Glish, G.L., Porter, M.D., Evans, N.D., Murray, R.W., Langmuir, 14, 17, (1998).Google Scholar
14. Terrill, R.H., Postlethwaite, T.A., Chen, C.-H., Poon, C.-D., Terzis, A., Chen, A., Hutchison, J.E., Clark, M.R., Wignall, G., Londono, J.D., Superfine, R., Falvo, M., Johnson, C.S., Samulski, E.T., Murray, R.W., J. Am. Chem. Soc. 117, 12537 (1995).Google Scholar
15. Whetten, R.L., Khoury, J.T., Alvarez, M.M., Murthy, S., Vezmar, I., Wang, Z.L., Stephens, P.W., Cleveland, C.L., Luedtke, W.D., Landman, U., Adv. Mater. 8, 4281, (1996).Google Scholar
16. Maye, M.M., Luo, J., Lin, Y., Engelhard, M. H., Hepel, M., Zhong, C. J., Langmuir, 19, 125 (2003).Google Scholar