Hostname: page-component-68945f75b7-9klrw Total loading time: 0 Render date: 2024-08-06T04:14:31.713Z Has data issue: false hasContentIssue false

Thermodynamic Measurements via Time-Resolved Transient Conductance

Published online by Cambridge University Press:  25 February 2011

Michael O. Thompson*
Affiliation:
Department of Materials Science, Cornell University, Ithaca, NY 14853
Get access

Abstract

Recent applications of the transient conductance technique to measurements of thermodynamic properties of Si are reviewed. The transient conductance measurements provide time-resolved data of the melt and solidification dynamics during pulsed laser irradiation. By studying these dynamics, thermodynamic properties can be measured in time and temperature regimes unaccessible by conventional techniques. Examples discussed include homogeneous nucleation, electrical properties of the supercooled liquid, and the melting temperature of amorphous Si. Homogeneous nucleation occurs at supercoolings of 500 K for quench rates near 1010 K/s, consistent with a liquid/crystal surface energy of 0.34 J/m2. Evidence of transient nucleation effects are observed at quench rates above 2 × 1010 K/s. During supercooling, the temperature dependence of the electrical conductivity of liquid Si was estimated between 1200 and 1800 K with a broad maximum observed near 1450 K. The melting temperature of amorphous Si was determined to be 220 K below the crystal melting temperature with no detectable differences between thermally unrelaxed and relaxed states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 For a review of literature in the field, see Mat. Res. Soc. Symp. Proc. 1, 4, 13, 23, 35, 51, 74 and 100.Google Scholar
2 Poate, J. M. and Mayer, J. W., eds., Laser Annealing of Semiconductors (Academic, New York, 1982).Google Scholar
3 Wood, R.F. and Geist, G.A., Phys. Rev. B 34, 2606 (1986).Google Scholar
4 Baeri, P., Campisano, S.U., Foti, G. and Rimini, E., J. Appl. Phys. 50, 788 (1979).Google Scholar
5 Yater, J. A. and Thompson, Michael O., Phys. Rev. Lett. 63, 2088 (1989).Google Scholar
6 Tsao, J. Y., Aziz, M. J., Peercy, P. S. and Thompson, Michael O., Mat. Res. Soc. Symp. Proc. 100, 519 (1988).Google Scholar
7 Peercy, P. S., Tsao, J. Y., Stiffler, S. R. and Thompson, Michael O., Appl. Phys. Lett. 52, 203 (1988).Google Scholar
8 Aziz, M. J., Tsao, J. Y., Thompson, Michael O., Peercy, P. S. and White, C. W., Phys. Rev. Lett. 56, 2489 (1986).Google Scholar
9 White, C.W., Wilson, S.R., Appleton, B.R. and Young, F.W. Jr., J. Appl. Phys. 51, 738 (1980).Google Scholar
10 Auston, D.H., Surko, C.M., Venkatesan, T.N.C., Slusher, R.E. and Golovchenko, J.A., Appl. Phys. Lett. 33, 437 (1978).Google Scholar
11 Thompson, Michael O., Galvin, G. J., Mayer, J. W., Peercy, P. S. and Hammond, R. B., Appl. Phys. Lett. 42, 445 (1983).Google Scholar
12 Larson, B.C., White, C.W., Noggle, T.S., Barhorst, J.F. and Mills, D.M., Appl. Phys. Lett. 42, 282 (1983).Google Scholar
13 Von der Linde, D., Fabricius, N., Danielzik, B. and Bonkhofer, T., J. Mater. Res. 74, 103 (1987).Google Scholar
14 Stiffler, S. R., Thompson, Michael O. and Peercy, P. S., Phys. Rev. Lett. 60, 2519 (1988); S. R. Stiffler, Michael O. Thompson and P. S. Peercy, unpublished work.Google Scholar
15 Uttormark, M. J., Stiffler, S. R., Thompson, Michael O. and Peercy, P. S., unpublished results.Google Scholar
16 Thompson, Michael O., Peercy, P. S., Aziz, M. J. and Roorda, S., unpublished results.Google Scholar
17 Glazov, V.M., Chizhevskaya, S.N. and Glagoleva, N.N., Liquid Semiconductors (Plenum Press, New York, 1969).Google Scholar
18 Devaud, G. and Turnbull, D., Appl. Phys. Lett. 46, 844 (1985).Google Scholar
19 Christian, J.W., The Theory of Transformation in Metals and Alloys, (Pergamon Press, Oxford, 1965).Google Scholar
20 Stich, I., Car, R. and Parrinello, M., Phys. Rev. Lett. 63, 2240 (1989); N.W. Ashcroft, private communication.Google Scholar
21 Thompson, Michael O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G. and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
22 Roorda, S., Doom, S., Sinke, W.C., Schölte, P.M.L.O. and van Loenen, E., Phys. Rev. Lett. 62, 1880 (1989).Google Scholar
23 Donovan, E.P., Spaepen, F., Poate, J. M. and Jacobson, D. C., Appl. Phys. Lett. 55, 1516 (1989).Google Scholar
24 Tsu, R., Hernandez, J.G. and Pollak, F.H., J. Non-Cryst. Solids 66, 109 (1984).Google Scholar