Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-16T12:53:44.102Z Has data issue: false hasContentIssue false

Thermal Stability of GaAs/InGaP and InGaP/(In)GaAs Interfaces

Published online by Cambridge University Press:  15 February 2011

F. Hyuga
Affiliation:
NTT LSI Laboratories, 3-1, Morinosato Wakamiya, Atsugi, Kanagawa, 243-01 Japan, hyuga@aecl.ntt.jp
T. Nittono
Affiliation:
NTT LSI Laboratories, 3-1, Morinosato Wakamiya, Atsugi, Kanagawa, 243-01 Japan, hyuga@aecl.ntt.jp
K. Watanabe
Affiliation:
NTT LSI Laboratories, 3-1, Morinosato Wakamiya, Atsugi, Kanagawa, 243-01 Japan, hyuga@aecl.ntt.jp
T. Furuta
Affiliation:
NTT LSI Laboratories, 3-1, Morinosato Wakamiya, Atsugi, Kanagawa, 243-01 Japan, hyuga@aecl.ntt.jp
Get access

Abstract

Thermal stabilities of GaAs/InGaP and InGaP/(In)GaAs interfaces are investigated using InGaP/(In)GaAs/InGaP single quantum wells. Annealing is performed at a temperature range between 600 and 900 °C for 10 min. Positions and the full widths at half maximum (FWHM) of photoluminescence (PL) peaks are almost identical to those of as-grown ones up to 800 °C. Blue shifts of PL peaks and increased widths of their FWHM observed after 900 °C annealing are suppressed by shortening the annealing time to 0.1 sec. Annealing at 900 ‘C for 0.1 sec is sufficient to activate Si ions implanted into (In)GaAs layers. As a result, these thermal stabilities are able to provide high reliability and high performance of InGaP/(In)GaAs heterostructure MESFET ICs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hyuga, F., Aoki, T., Sugitani, S., Asai, K. and Imamura, Y., Advanced III-V Compound Semiconductor Growth. Processing and Devices, edited by Pearton, S.J., Sadana, D.K. and Zavada, J.M. (Mater. Res. Soc. Proc. 240, Pittsburgh, PA 1991), pp. 777781.; Appl. Phys. Lett.60, 1963 (1992).Google Scholar
2. Gomyo, A., Kobayashi, K., Kawata, S., Hino, I. and Suzuki, T., J. Crystal Growth 77, 367 (1986).Google Scholar
3. Dabkowski, F.P., Gavrilovic, P., Meehan, K., Stutius, W., Williams, J.E., Shahid, M.A. and Mahajan, S., Appl. Phys. Letters 52, 620 (1990).Google Scholar
4. Guimar-es, F.E.G., Elsner, B., Westphalen, R., Spangenberg, B., Geelen, H.J., Balk, P. and Heime, K., J. Crystal Growth 124, 199 (1992).Google Scholar
5. Schneider, R.P., Jr., Jones, E.D. and Follstaedt, D.M., Appl. Phys. Lett. 65, 587 (1994).Google Scholar
6. Sugitani, S., Yamane, Y., Nittono, T., Yamazaki, H. and Yamasaki, K., 1994 GaAs IC Symp. Dig., pp. 123126.Google Scholar
7. Nittono, T., Sugitani, S. and Hyuga, F., J. Appl. Phys. 78, 5387 (1995).Google Scholar
8. Sugitani, S., Yamasaki, K., and Yamazaki, H., Appl. Phys.Lett. 51, 806 (1987).Google Scholar