Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-s82fj Total loading time: 0.263 Render date: 2022-09-24T21:10:31.915Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Theoretical and experimental investigation of the recombination reduction at surface and grain boundaries in Cu(In,Ga)Se2 solar cells by valence band control

Published online by Cambridge University Press:  30 April 2015

Takahito Nishimura
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Yoshiaki Hirai
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Yasuyoshi Kurokawa
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Akira Yamada
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16 O-okayama, Meguro-ku, Tokyo 152-8552, Japan Photovoltaics Research Center (PVREC), Tokyo Institute of Technology, 2-12-1-NE-16, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
Get access

Abstract

We carried out theoretical calculation for Cu(In,Ga)Se2 (CIGS) solar cells with energy bandgap of 1.4 eV assuming formation of a Cu-poor layer on the surface of CIGS films. This calculation result revealed that formation of a thinner Cu-poor layer such as a few nanometers leads to improvement of the solar cells performance. This is because interfacial recombination was suppressed due to repelling holes from the interface by valence band offset (ΔEV). Next, we investigated composition distribution in the cross section of CIGS solar cells with Ga contents of 30% and 70% by transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). It was revealed that the Cu-poor layer was formed on the surface and at the grain boundary (GB) in the case of conversion efficiency (η) of 17.3%, although it was not formed in the case of lower η of 13.8% for a Ga content of 30%. These results indicate that formation of the Cu-poor layer contributed to improvement of cell performance by suppression of carrier recombination. Moreover, it was also confirmed that although the Cu-poor layer was observed on the surface, it was not observed at the GB in the case of CIGS solar cells with a Ga content of 70% which had η of 12.7%. It is thought that the effect of repelling holes by ΔEV is not obtained at the GB and the solar cell performance in the Ga content of 70% is lower than that in the Ga content of 30%. Thus, we suggest importance of the Cu-poor layer at the GB for high efficiency of CIGS solar cells with high Ga contents.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Powalla, M., Jackson, P., Hariskos, D., Paetel, S., Witte, W., Würz, R., Lotter, E., Menner, R., and Wischemann, W., presented at EU PVSEC29, 2014.
Chirilă, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A. R., Fella, C., Kranz, L., Keller, D., Gretener, C., Hagendorfer, H., Jaeger, D., Erni, R., Nishiwaki, S., Buecheler, S., and Tiwari, A. N., Nat. Mater 12, 1107 (2013).CrossRef
Contreras, M. A., Mansfield, L. M., Egaas, B., Li, J., Romero, M., Noufi, R., Rudiger-voigt, E., and Mannstadt, W., Prog. Photovoltaics Res. Appl 20, 843 (2012).CrossRef
Minemoto, T., Matsui, T., Takakura, H., Hamakawa, Y., Negami, T., Hashimoto, Y., Uenoyama, T., and Kitagawa, M., Sol. Energy Mater. Sol. Cells 67, 83 (2001).CrossRef
Hirai, Y., Hidaka, Y., Kurokawa, Y., and Yamada, A., Jpn. J. Appl. Phys 51, 10NC03 (2012).CrossRef
Heath, J. T., Cohen, J. D., Shafarman, W. N., Liao, D. X., and Rockett, A. A., Appl. Phys. Lett 80, 4540 (2002).CrossRef
Schmid, D., Ruckh, M., Grunwald, F., and Schock, H. W., J. Appl. Phys 73, 2902 (1993).CrossRef
Schmid, D., Ruckh, M., and Schock, H.W., Sol. Energy Mater. Sol. Cells 41, 281 (1996).CrossRef
Hetzer, M. J., Strzhemechny, Y. M., Gao, M., Contreras, M. A., Zunger, A., and Brillson, L. J., Appl. Phys. Lett 86, 162105 (2005).CrossRef
Negami, T., Kohara, N., Nishitani, M., Wada, T., and Hirao, T., Appl. Phys. Lett 67, 825 (1995).CrossRef
Hirai, Y., Kurokawa, Y., and Yamada, A., Jpn. J. Appl. Phys 53, 012301 (2014).CrossRef
Nishimura, T., Hirai, Y., Kurokawa, Y., and Yamada, A., Jpn. J. Appl. Phys (2015) (to be published).
Liu, Y., Sun, Y., and Rockett, A., Sol. Energy Mater. Sol. Cells 98, 124 (2012).CrossRef
Azulay, D., Millo, O., Balberg, I., Schock, H.W., Fisher, I. V., and Cahen, D., Sol. Energy Mater. Sol. Cells 91, 85 (2007).CrossRef
Taretto, K., Rau, U., and Werner, J. H., Thin Solid Films 480, 8 (2005).CrossRef
Persson, C. and Zunger, A., Appl. Phys. Lett 87, 211904 (2005).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Theoretical and experimental investigation of the recombination reduction at surface and grain boundaries in Cu(In,Ga)Se2 solar cells by valence band control
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Theoretical and experimental investigation of the recombination reduction at surface and grain boundaries in Cu(In,Ga)Se2 solar cells by valence band control
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Theoretical and experimental investigation of the recombination reduction at surface and grain boundaries in Cu(In,Ga)Se2 solar cells by valence band control
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *