Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T10:44:46.987Z Has data issue: false hasContentIssue false

Terabit Density Cobalt Nanowire Arrays With Tunable Magnetic Properties

Published online by Cambridge University Press:  01 February 2011

Andrei Ursache
Affiliation:
Department of Physics, University of Massachusetts, Amherst, MA
Mustafa Bal
Affiliation:
Department of Physics, University of Massachusetts, Amherst, MA
James T. Goldbach
Affiliation:
Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA
Robert L. Sandstrom
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY
C. T. Black
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY
Thomas P. Russell
Affiliation:
Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA
Mark T. Tuominen
Affiliation:
Department of Physics, University of Massachusetts, Amherst, MA
Get access

Abstract

Nanoporous templates made from diblock copolymer films are used for electrochemical fabrication of hexagonal arrays of vertical cobalt magnetic nanowires at terabit/in2 density. The nanowire diameter and areal density are determined by the copolymer molecular weight, whereas the nanowire length and internal crystal morphology are controlled through the dc electrodeposition growth process. The array magnetic properties can be modified substantially by electrodeposition pH conditions while keeping wire size and interwire distance constant. Optimum pH control results in preferential growth of c-axis oriented crystallites with large perpendicular coercivity. The appearance of exchange bias behavior, exhibited at low temperatures, is also investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thurn-Albrecht, T.,Schotter, J., Kästle, G. A.,Emley, N.,Shibauchi, T., Krusin-Elbaum, L.,Guarini, K.,Black, C. T.,Tuominen, M. T., andRussell, T. P., Science 290, 2127 (2000).Google Scholar
2. Nakahara, S. andMahajan, S., J. Electrochem. Soc. 127, 283 (1980).Google Scholar
3. Daimon, H. andKitakami, O., J. Appl. Phys. 73, 5391 (1993).Google Scholar
4. Xu, T., Kim, H.C.,DeRouchey, J.,Seney, C.,Levesque, C.,Martin, P., Stafford, C.M., andRussell, T. P., Polymer 42, 9091 (2001).Google Scholar
5. Sellmyer, D. J.,Zheng, M., andSkomski, R., J. Phys.: Condens. Matter 13, R433 (2001).Google Scholar
6. Henry, Y.,Ounadjela, K.,Piraux, L.,Dubois, S., George, J.-M., and Duvail, J.-L., Eur. Phys. J. B 20, 35 (2001).Google Scholar
7. Ferré, R. andOunadjela, K., Phys. Rev. B 56, 14066 (1997).Google Scholar
8. Schmidt, H. andRam, R. J., J. Appl. Phys. 89, 507 (2001).Google Scholar
9. Croll, I. M., IEEE Trans. Magn. MAG-23, 59 (1987).Google Scholar
10. Therese, G. Helen Annal and Kamath, P. Vishnu, Chem. Mater. 12, 1195 (2000).Google Scholar
11. Tochitskii, T. A.,Shadrov, V. G., andBoltushkin, A. V., Cryst. Res. Technol. 28, 1079 (1993).Google Scholar
12. Meiklejohn, W. H. and Bean, C.P., Phys. Rev. 102, 1413 (1956).Google Scholar
13. Ursache, A.,Bal, M.,Goldbach, J. T.,Penelle, J.,Sandstrom, R. L.,Black, C. T.,Russell, T. P., andTuominen, M. T., 2002 (in preparation).Google Scholar