Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-827q6 Total loading time: 0.365 Render date: 2022-01-19T18:03:12.424Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Temperature Dependent Thermopower and Resistance Measurements of CNT-MgB2 Composites

Published online by Cambridge University Press:  12 April 2012

Kofi W. Adu
Affiliation:
Department of Physics, Pennsylvania State University, Altoona College, Altoona, PA 16601, U.S.A. Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
Ruwantha Jayasingha
Affiliation:
Department of Physics & Astronomy, University of Louisville, Louisville, KY 40292, U.S.A.
Danhao Ma
Affiliation:
Department of Physics, Pennsylvania State University, Altoona College, Altoona, PA 16601, U.S.A.
Gamini U. Sumanasekera
Affiliation:
Department of Physics & Astronomy, University of Louisville, Louisville, KY 40292, U.S.A. Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, U.S.A.
Get access

Abstract

The temperature dependent resistance R(T) and thermopower S(T) of sintered single wall carbon nanotubes (SWCNT) and magnesium diboride (MgB2) composites containing 5wt%, 10wt%, and 15wt% of SWCNTs have been measured and compared to their pure counterparts. The thermopower of both MgB2 (in the normal state) and SWCNT remain positive over the entire temperature range (10K to 300K) with room temperature values being ∼ 8μV/K and 57μV/K, respectively. The thermopower of the sintered composites decreased with decreasing temperature and switched from positive to negative near 70K. The superconducting critical temperature (Tc) of the samples ranges from 38K-41K. The room-temperature resistance ratio (RRR) is seen to depend on the sample composition. The temperature width (ΔT) is observed to increase with increasing SWCNT concentration. The normal state resistance data were fitted with the generalized Block-Grüneisen function obtaining Debye temperature of ∼ 900K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature. 354, 5658 (1991); J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, ibid. 410, 63-64 (2001) CrossRefGoogle Scholar
2. Sumanasekera, G.U., Adu, C. K. W., Fang, S., and Eklund, P. C., Phys. Rev. Lett. 85, 10961099 (2000); J. Hone, I. Ellwood, M. Muno, A. Mizel, M. L. Cohen, A. Zettl, A. G. Rinzler, and R. E. Smalley, ibid. 80, 1042-1045 (1998); T. Yildirim, et al., ibid. 87, 037001 (2001); R. Osborn et al., ibid. 87, 017005 (2001); P. C. Canfield, D. K. Finnemore, S. L. Bud’ko, J. E. Ostenson, G. Lapertot, C. E. Cunningham, and C. Petrovic. ibid, 86, 2423-2426 (2001) CrossRefGoogle Scholar
3. Xi, X. X., Rep. Prog. Phys. 71, 116501 (2008)CrossRefGoogle Scholar
4. Drozd, V. A., Gabovich, A. M., Gierlowski, P., Pekala, M., and Szymczak, H., Physica C-Superconductivity and Its Applications. 402, 325334 (2004); A. Poddar, B. Bandyopadhyay, P. Mandal, D. Bhattacharya, P. Choudhury, U. Sinha, and B. Ghosh, ibid, 390, 191-196 (2003); M. Schneider et al., ibid, 363, 6-12 (2001); S. Lee, T. Masui, A. Yamamoto, H. Uchiyama, and S. Tajima, ibid, 397, 7-13 (2003); S. Tajima, T. Masui, J. Quilty, S. Lee, A. Yamamoto, and A. Yamanaka, ibid, 388,103-104 (2003); T. Masui and S. Tajima, ibid, 385, 91-97 (2003) CrossRefGoogle Scholar
5. Eklund, P. C. and Mabatah, A.K., Review of Scientific Instruments. 48, 775777 (1977)CrossRefGoogle Scholar
6. Martinho, H. et al. . Solid State Communications. 125,499502 (2003)CrossRefGoogle Scholar
7. Kong, Y., Dolgov, O. V., Jepsen, O., and Andersen, O. K., Physical Review B. 64, (2001).CrossRefGoogle Scholar
8. Ausloos, M., Durczewski, K., and Ulner, J., International Journal of Modern Physics B. 15, 237257 (2001)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Temperature Dependent Thermopower and Resistance Measurements of CNT-MgB2 Composites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Temperature Dependent Thermopower and Resistance Measurements of CNT-MgB2 Composites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Temperature Dependent Thermopower and Resistance Measurements of CNT-MgB2 Composites
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *