Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-24T06:38:27.197Z Has data issue: false hasContentIssue false

Temperature and Ion-Mass Dependence of Amorphization Dose for Ion Beam Irradiated Zircon (ZrSiO4)

Published online by Cambridge University Press:  25 February 2011

L. M. Wangl
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, NM 87131
R. C. Ewing
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, NM 87131
W. J. Weber
Affiliation:
Materials Science Department, Pacific Northwest Laboratory, Richland, WA 99352
R. K. Eby
Affiliation:
Department of Geological Sciences, University of Toronto, Ontario, Canada M55 3B1
Get access

Abstract

The temperature dependence of amorphization dose for zircon under 1.5 MeV Kr ion irradiation has been investigated using the HVEM-Tandem Facility at Argonne National Laboratory. Three regimes were observed in the amorphization dose-temperature curve. In the first regime (15 to 300 K), the critical amorphization dose increased from 3.06 to 4.5 ions/nm2. In the second regime (300 to 473 K), there is little change in the amorphization dose. In the third regime (> 473 K), the amorphization dose increased exponentially to 8.3 ions/nm2 at 913 K. This temperature dependence of amorphization dose can be described by two processes with different activation energies (0.018 and 0.31 eV respectively) which are attributed to close pair recombination in the cascades at low temperatures and radiation-enhanced epitaxial recrystallization at higher temperatures. The upper temperature limit for amorphization of zircon is estimated to be 1100 K. The ion-mass dependence of the amorphization dose (in dpa) has also been discussed in terms of the energy to recoils based on data obtained from He, Ne, Ar, Kr, Xe irradiations and a 238Pu-doped sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Faure, G., Principles of Isotope Geology (John Wiley and Sons, New York, 1977).Google Scholar
2. Ewing, R. C., Chakoumakos, B. C., Lumpkin, G. R., and Murakami, T., Materials Research Society Bulletin 12, 58 (1987).Google Scholar
3. Ewing, R. C., Haaker, R. F., and Lutze, W., in: Scientific Basis for Radioactive Waste Management V., ed. Lutze, W. (Materials Research Society, North-Holland, New York, 1983) p. 389.Google Scholar
4. Chakoumakos, B. C., Murakami, T., Lumpkin, G. R., and Ewing, R. C., Science 236, 1556 (1987).Google Scholar
5. Harker, A. B. and Flintoff, J. F., in: Scientific Basis for Nuclear Waste Management VII, ed. McVay, G. L., Materials Research Society, North-Holland, New York, 1984) p. 513.Google Scholar
6. Gentry, R. V., Sworski, T. J., McKown, H. S., Smith, D. S., Eby, R. E., and Christie, W. H., Science 216, 226. (1982).Google Scholar
7. Weber, W. J., J. Mater. Res. 5, 2687 (1990).CrossRefGoogle Scholar
8. Murakami, T., Chakoumakos, B. C., Ewing, R. C., Lumpkin, G. R. and Weber, W. J., American Mineralogist 76, 1510 (1991).Google Scholar
9. Babsail, L., Hamelin, N. and Townsend, P. D., Nucl. Instr. and Meth. B59/60, 1219 (1992).Google Scholar
10. Wang, L. M. and Ewing, R. C., Nucl. Instr. and Meth. B65, 324 (1992).Google Scholar
11. Koike, J., Okamoto, P.R., Rehn, L. E. and Meshii, M., J. Mater. Res. 4, 1143 (1989).CrossRefGoogle Scholar
12. Wang, L. M. and Butcher, R. C., Philosophical Magazine A. 64, 1209 (1991).Google Scholar
13. Eby, R. K., Ph.D. Thesis, University of New Mexico, 1992.Google Scholar
14. Wang, L. M., Eby, R. K., Janeczek, J. and Ewing, R. C., Nucl. Instr. and Methods in Phys. Res. B59/60, 395 (1991).Google Scholar
15. Allen, C. W., Funk, L. L., Ryan, E. A. and Ockers, S. T., Nucl. Instr. and Methods in Phys. Res. B40/553 (1989).Google Scholar
16. Ziegler, J. F., Biersack, J. P. and Littmark, U., The stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
17. Weber, W. J. and Wang, L. M., these proceedings.Google Scholar
18. Delage, J., Popoola, O., Villain, J. P. and Moine, P., Mater. Sci. and Eng. A115, 133 (1989).CrossRefGoogle Scholar
19. Sandhu, A. S., Singh, L., Ramola, R. C., Singh, S. and Virk, H. S., Nucl. Instr. and Meth. B46, 122 (1990).Google Scholar
20. Birtcher, R. C. and Wang, L. M. in Phase Formation and Modification by Bean Solid Interactions, edited by Was, G., Rehn, L. E. and Follstaedt, D. M. (Mater. Res. Soc. Proc. 235, Pittsburg, PA, 1992) pp. 467472.Google Scholar
21. Townsend, P. D., Nucl. Instr. and Meth. B65, 243 (1992).CrossRefGoogle Scholar
22. Wiedersich, H., Rad. Effects 113, 97 (1990).Google Scholar
23. Rehn, L. E., J. Nucl. Mater. 174, 144 (1990).Google Scholar