Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T15:34:38.657Z Has data issue: false hasContentIssue false

TEM and Electrical Analysis of Sputtered Barium Strontium Titanate (BST) Thin Films on Flexible Copper Substrates

Published online by Cambridge University Press:  01 February 2011

Brian Laughlin
Affiliation:
Institute for Electroceramic Thin Films, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A.
Jon Ihlefeld
Affiliation:
Institute for Electroceramic Thin Films, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A.
Jon-Paul Maria
Affiliation:
Institute for Electroceramic Thin Films, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A.
Get access

Abstract

Ba0.6Sr0.4TiO3 (BST) films were deposited on copper foils by radio frequency magnetron sputtering. These films will be an integral part of flexible capacitor sheets intended for space borne re-configurable antenna arrays. By the use of controlled pO2 high temperature anneals, the films were fully crystallized in the absence of substrate oxidation. X-ray diffraction and transmission electron microscopy (TEM) showed no existence of copper oxidation (i.e. Cu2O or CuO phases). The deposited BST films exhibit a high permittivity (625) and a low tan δ (0.020) at zero bias and room temperature. A pronounced electrical tunability ratio of 3.5:1 is observed on these devices. Devices show loss tangents as low as 0.003 in fields approaching 400 kV/cm. Electrical field calculations are based on cross-sectional atomic force microscopy (AFM) images that reveal a film thickness of 800 nm. Temperature dependent measurements show a Tmax ∼ 230 K with a diffuse dielectric anomaly. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) analyses indicate a conformal film with a mixed grain morphology and an abrupt Cu/BST interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, T., Zawadzki, P., Stall, R.A., Liang, S., Lu, Y., Integrated Ferroelectrics 17(1–4) 127139 (1997).Google Scholar
2. Cho, H.J., Park, J.B., Yu, Y.S., Roh, J.S., Yoon, H.K., Proc. IEEE Intl. Sym. Application of Ferroelectrics, 12th (2001).Google Scholar
3. Fitsilis, F., Berichte des Forschungszentrums Juelich, (2002).Google Scholar
4. Kuegeler, C., Liedtke, R., Waser, R., Proc. IEEE Intl. Sym. Application of Ferroelectrics, 13th 215218 (2002).Google Scholar
5. Hoffmann, S. and Waser, R., J. Eur. Cer. Soc. 19 1339 (1999).Google Scholar
6. Tian, H. Y., Luo, W. G., Pu, X. H., Ding, A. L., J. Matl. Sci. Letters 19 1211 (2000).Google Scholar
7. Lee, B., Zhang, J., Thin Solid Films 388 107 (2001).Google Scholar
8. Saha, S., Krupanidhi, S.B., J. of Appl. Phys. 87(6) 3056–62 (2000).Google Scholar
9. Cukauskas, E.J., Kirchoefer, S.W., Desisto, W.J., Pond, J.M., Appl. Phys. Letters, 74(23) 4034–6 (1999).Google Scholar
10. Fazan, P.C., Integrated Ferroelectrics 4(3) 247–56 (1994).Google Scholar
11. Padmini, P., Taylor, T.R., Lefevre, M.J., Nagra, A.S., York, R.A., Speck, J.S., Appl. Phys. Letters 75(20) 3186–8 (1999).Google Scholar
12. Im, J., Auciello, O., Baumann, P.K., Streiffer, S.K., Kaufamn, D.Y., Krauss, A.R., Appl. Phys. Letters 76(5) 625–7 (2000).Google Scholar
13. York, R.A., Nagra, A.S., Padmini, P., Auciello, O., Streiffer, S.K., Im, J., Integrated Ferroelectrics 34 177–88 (2001).Google Scholar
14. Horikawa, T., Mikami, N., Makita, T., Tanimura, J., Kataoka, M., Sato, K., Nunoshita, M., Jpn. J. Appl. Phys. 32 4126–30 (1993).Google Scholar
15. Dawley, J.T., Clem, P.G., Appl. Phys. Letters 81(16) 3028–30 (2002).Google Scholar
16. Fan, W., Saha, S., Carlisle, J.A., Auciello, O., Appl. Phys. Letters 82(9) 1452–4 (2003).Google Scholar