Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-31T11:04:06.306Z Has data issue: false hasContentIssue false

Tellurium Alloys for Reversible Optical Data Storage

Published online by Cambridge University Press:  28 February 2011

R. T. Young
Affiliation:
Energy Conversion Devices, Inc., 1675 West Maple Road, Troy, Michigan 48084
D. Strand
Affiliation:
Energy Conversion Devices, Inc., 1675 West Maple Road, Troy, Michigan 48084
J. Gonzalez-Hernandez
Affiliation:
Energy Conversion Devices, Inc., 1675 West Maple Road, Troy, Michigan 48084
S. R. Ovshinsky
Affiliation:
Energy Conversion Devices, Inc., 1675 West Maple Road, Troy, Michigan 48084
Get access

Abstract

Tellurium-based chalcogenide alloys, which are used for electronic switch materials, also have the appropriate optical and thermal properties for reversible optical data recording. One of the major concerns encountered with this type of phase change material is that there can be two contradictory characteristics of the material, i.e., the amorphous phase thermal stability and the crystallization rate are involved. We have demonstrated, in this paper, that this problem can be solved. We report that certain transition metal elements added to Te alloy films can substantially improve the rate of crystallization without any reduction of the amorphous phase stability.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ovshinsky, S.R., Phys. Rev. Lett. 21, 1450 (1968); Gordon Conference on the Chemistry and Metallurgy of Semiconductors, July, 1969.Google Scholar
2. Feinlieb, J., deNeufville, J.P., Moss, S.C. and Ovshinsky, S.R., Appl Phys. Lett., 18, 254 (1971).Google Scholar
3. Evans, E.J., Helbers, J.H. and Ovshinsky, S.R., J. Non-Cryst. Solids, 2, 334, (1970).Google Scholar
4. Keller, H. and Stuke, J., Phys. Stat. Sol., 8, 831 (1965).Google Scholar
5. Von Gutfeld, R.J. and Chandhari, P., J. Appl. Phys., 43, 4688 (1972).Google Scholar
6. Weiser, K., Gambino, R.J., and Reinhold, J.A., Appl. Phys. Lett., 22, 48 (1973).CrossRefGoogle Scholar
7. Von Gutfeld, R.J., Appl. Phys. Lett., 22, 257 (1973).CrossRefGoogle Scholar
8. Takenaga, Mutsuo, Yamada, Noboru, Nishiuchi, Nenichi, Akahira, Nobuo, Ohta, Takeo, Nakamura, Sugura and Yamashita, Tadaoki, J. Appl. Phys., 54, 5376 (1983).Google Scholar
9. Takenaga, Mutsuo, Yamada, Noboru, Ohara, Shunji, Nishiuchi, Kenichi, Nagashima, Michiyoshi, Kashihara, Toshiaki, Nakamura, Suguru and Yamashita, Tadaoki, Proc. SPIE, 420, 173 (1983).Google Scholar
10. Bell, A.E. and Spong, F.W., Appl. Phys, Lett., 38, 920 (1981).Google Scholar
11. Strand, D. and Adler, D., Proc., SPIE, 420, 200 (1983).Google Scholar
12. Clemens, P.C., Appl. Opt., 22, 3165 (1983).Google Scholar
13. Van Uijen, C.M.J., Proc. SPIE, 529, 1 (1985).Google Scholar
14. Chen, M., Rubin, K.A., Marrello, V., Gerber, U.G. and Jipson, V.B., Appl. Phys. Lett., 46, 734 (1985).CrossRefGoogle Scholar
15. See for example, “Inorganic Glass-Forming Systems”, Rawson, H., Academic Press, 1967, Chapter 3.Google Scholar
16. See for example, “Tellurium and Tellurides”, Chizhikov, D.M. and Shchastlivyi, V.P., Collet's (publishers) Ltd., 1970.Google Scholar
17. Buschow, K.H.J. and Beekmans, N.M., Solid State Comm., 35, 233 (1980).Google Scholar
18. Savage, J.A., J. Non-Cryst. Solids, 11, 1211 (1972).Google Scholar