Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-24T05:16:04.651Z Has data issue: false hasContentIssue false

Tantalum Pentoxide for Advanced DRAM Applications

Published online by Cambridge University Press:  10 February 2011

K. A. McKinley
Affiliation:
Lam Research Corporation, 49026 Milmont Drive, Fremont, CA 94538
N. P. Sandier
Affiliation:
Lam Research Corporation, 49026 Milmont Drive, Fremont, CA 94538
Get access

Abstract

Tantalum pentoxide (Ta2O5) films were deposited from the reaction of tantalum pentaethoxide (Ta(OC2H5)5) and oxygen (O2) using the Lam Research Corporation DSM™9800 advanced LPCVD reactor. Typical films were deposited at a rate of 0.9 – 1.1 nm/min at 400°C. The films were stoichiometric with an O/Ta ratio of 2.57/1.00 and excellent compositional uniformity. Conformity was >95% indicating that the process is surface reaction rate limited. Films with non‐uniformities <2.2% were deposited on 300 mm wafers. The deposited non‐uniformity on 150mm and 200mm wafers was <2.0% ‐1σ within a wafer, wafer to wafer within a batch, and batch to batch. The dielectric constant for as‐deposited films was 22–24, and as high as 34 for films which were heat treated. Various post deposition heat treatments were performed to improve the capacitor's electrical properties. Superior results were obtained from rapid thermal annealing (RTA) in N2O compared with RTA in O2 and two‐step UV‐O3 followed by high temperature annealing in dry O2. Values for the leakage current of <10-8 A/cm2 at 1.2 volts negative bias (worst case) and breakdown >5 MV/cm at 1.6μΑ with tegox<2.5 nm have been obtained. These values meet the requirements for 256 Mbit DRAM memory devices Bottom and top electrode formation and integration issues are also addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ohta, K., Yamada, K., Shimizu, R., and Tarui, Y., IEEE Trans. Electron Devices, ED‐29, 1982, 368 Google Scholar
2 Kato, T., Itoh, T., Taguchi, M., Nakumura, T., and Ishikawa, H., Symposium on VLSI Technology, Digest of Technical Papers, IEEE, 1983. 86 Google Scholar
3 Oehrlein, G. S., J. Appl. Phys., 59, 1587 (1986)Google Scholar
4 Shinriki, H., Nishioka, Y., and Mukai, K., Extended Abstracts, International Conference on Solid State Devices and Materials, Tokyo 1987. 215 Google Scholar
5 Hashimoto, C., Oikawa, H., and Honma, N., EEEE Trans. Electron Devices, 36, 14 (1989)Google Scholar
6 Shinriki, H., Nishioka, Y., Ohji, Y., and Mukai, K., IEEE Trans. Electron Devices, 36, 328 (1989)Google Scholar
7 Byeon, S. G. and Tzeng, Y., IEEE Trans. Electron Devices, 37, 972 (1990)Google Scholar
8 Numasawa, Y., Kamiyama, S., Zenke, M., and Sakamoto, M., IEDM Tech. Dig., 89, 43 (1989)Google Scholar
9 Saitoh, M., Mori, T., and Tamura, H., IEDM Tech. Dig., 32, 680 (1986)Google Scholar
10 Matsui, M., Oka, S., Yamagishi, K., Kuroiwa, K., and Tarui, Y., Jpn. J. Appl. Phys., 27, 506 (1988)Google Scholar
11 Zaima, S., Furuta, T., Yasuda, Y., and Iida, M., J. Electrochem. Soc, 137, 1297 (1990)Google Scholar
12 Zaima, S., Furuta, T., Koide, Y., and Yasuda, Y., J. Electrochem. Soc, 137, 2876 (1990)Google Scholar
13 Shinriki, H., IEEE Trans. Electron Devices, 38, 55 (1991)Google Scholar
14 Jensen, K. F. and Kern, W., Thin Film Processes. Vol.2, (Academic Press, New York, 1991), p. 283 Google Scholar
15 Kwon, K. W., Kang, C. S., Park, T. S., Sun, Y. B., Sandier, N., and Tribuía, D., Proceedings Materials Research Society, 284, 505 (1993)Google Scholar
16 Lo, G. Q., Kwong, Dim‐Lee, Fazan, P. C., Mathews, V. K., and Sandier, N., IEEE Electron Device Letters, 14, 216 (1993)Google Scholar
17 Kamiyama, S., Saeki, T., Mori, H., and Numasawa, Y., IEDM Tech. Dig., 1991. 827 Google Scholar
18 Fazan, P. C., Mathews, V. K., Maddox, R. L., Ditali, A., Sandier, N., and Kwong, D. L., Extended Abstracts, International Conference on Solid State Devices and Materials, 1992. 697 Google Scholar
19 Lau, W. S., Khaw, K. K., and Sandler, N. P., Extended Abstracts, International Conference on Solid State Devices and Materials, 1995. 515 Google Scholar
20 Sun, S. C. and Chen, T. F., IEDM Tech. Dig., 1994. 333 Google Scholar
21 Lau, W. S., Lourdusamy, P. J., and Sandler, N. P., Submitted for publication to the International Conference on Solid State Devices and Materials, 1996 Google Scholar
22 Park, H. S., Baek, Y. K., Kim, J. C., Choi, S. H., and Oh, K. H., Extended Abstracts, International Conference on Solid State Devices and Materials, 1992. 524 Google Scholar
23 Shinriki, H., Nakata, M., Nishioka, Y., and Mukai, K., IEEE Electron Device Letters, 10, 514 (1989)Google Scholar
24 Kwon, K. W., Park, S. O., Kang, C. S., Kim, Y. N., Ahn, S. T., and Lee, M. Y., IEDM Tech. Dig., 1993, 53 Google Scholar
25 Kwon, K. W., Park, I. S., Han, D. H., Kim, E. S., Ahn, S. T., and Lee, M. Y., IEDM Tech. Dig, 1994, 835 Google Scholar
26 Lane, A. P., Chen, A., Sandier, N. P., Page, B. S., Mat. Res. Soc. Proc., 250, 331 (1992)Google Scholar
27 Treichel, H., Mitwalsky, A., Tempel, G., Zorn, G., Bohling, D. A., Coyle, K. R., Felker, B. S., Kern, W., Lane, A. P., and Sandier, N. P., Advanced Materials for Optics and Electronics, 5, 163 (1995)Google Scholar
28 Treichel, H., Mitwalsky, A., Sandier, N. P., Tribuía, D., Kern, W., and Lane, A. P., Advanced Materials for Optics and Electronics, 1, 299 (1992)Google Scholar