Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-6vg6l Total loading time: 0.258 Render date: 2022-12-02T01:58:36.726Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Synthesis of Iron Pyrite Film through Low Temperature Atmospheric Pressure Chemical Vapor Deposition

Published online by Cambridge University Press:  29 August 2012

Siva P Adusumilli
Affiliation:
Center for Autonomous Solar Power (CASP), State University of New York at Binghamton, Vestal, NY 13850, U.S.A. Dept. of Electrical Engineering, State University of New York at Binghamton, Vestal, NY 13850, U.S.A.
Tara P Dhakal
Affiliation:
Center for Autonomous Solar Power (CASP), State University of New York at Binghamton, Vestal, NY 13850, U.S.A.
Charles R Westgate
Affiliation:
Center for Autonomous Solar Power (CASP), State University of New York at Binghamton, Vestal, NY 13850, U.S.A. Dept. of Electrical Engineering, State University of New York at Binghamton, Vestal, NY 13850, U.S.A.
Get access

Abstract

Pyrite phase of FeS2 has attracted substantial attention in the field of thin film solar technology because of its high optical absorption coefficient (~5 x 105 cm-1 at hν > 1.3eV) and the band gap of 0.95 eV. In this research, we have grown highly pure iron pyrite films using a low temperature atmospheric pressure chemical vapor deposition technique. The synthesis temperature is in the range of 375-400°C and Di-tert-butyl disulfide (TBDS) is used as the sulfur precursor. TBDS is a safe and low cost sulfur source unlike H2S, which is highly toxic and requires extreme care in handling. The films obtained were uniform and free from common impurity phases such as troilite and marcasite. The FeS2 films grown earlier with CVD synthesis and sulfurized using H2S had pinholes and contained secondary phases like marcasite and troilite. The FeS2 pyrite phase was confirmed using various characterization techniques that included SEM, EDS, XRD and XPS.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ennaoui, A., Fiechter, S., Pettenkofer, C., Alonsovante, N., Buker, K., Bronold, M., Hopfner, C., and Tributsch, H., Sol. Energy Mater. Sol. Cells 29, 289 (1993)CrossRefGoogle Scholar
2. Wadia, Cyrus, Wu, Yue, Gul, Sheraz, Volkman, Steven K., Guo, Jinghua, and Paul Alivisators, A., Chem. Mater. 2, 2568 (2009)CrossRefGoogle Scholar
3. Wadia, C., Alivisatos, A. P., and Kammen, D. Environ. Sci. Technol. 2009, 43, 2072 (2009)CrossRefGoogle Scholar
4. Geochim, Luther G.. Cosmochim. Acta., 55 2839 (1991)Google Scholar
5. Raturi, A. K., Ndjeli, L. and Rabah, K. 11, 191 (1997)CrossRefGoogle Scholar
6. Smestad, G., Ennaoui, A., Fiechter, S., Tributsch, H., Hofmann, W. K., Birkholz, M., and Kautek, W., Solar Energy Mater. 20, 149 (1990)CrossRefGoogle Scholar
7. von Oertzen, G.U., Skinner, W.M., Nesbitt, H.W., Radiation Physics and Chemistry, 75, 1855 (2006)CrossRefGoogle Scholar
8. Panzmer, G., and Egert, B., Surf. Sci. 144, 651 (1984)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis of Iron Pyrite Film through Low Temperature Atmospheric Pressure Chemical Vapor Deposition
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Synthesis of Iron Pyrite Film through Low Temperature Atmospheric Pressure Chemical Vapor Deposition
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Synthesis of Iron Pyrite Film through Low Temperature Atmospheric Pressure Chemical Vapor Deposition
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *