Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-mdtzd Total loading time: 0.215 Render date: 2021-10-18T05:52:08.575Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Synthesis of Fullerene by Spark Plasma Sintering and Thermomechanical Transformation of Fullerene Into Diamond on Fe-C Composites

Published online by Cambridge University Press:  01 February 2011

Francisco C. Robles-Hernández*
Affiliation:
University of Houston, Engineering Technology, Houston, TX, USA 77204
H. A. Calderon*
Affiliation:
Departamento Ciencia de Materiales, ESFM-IPN, Mexico DF
*
Emails: fcrobles@uh.edu
Emails: hcalder@esfm.ipn.mx
Get access

Abstract

In this work, results are presented regarding the characterization of nanostructured Fe matrix composites reinforced with fullerene. The fullerene is a mix of 15 wt.%C60, 5 wt.%C70 and 80 wt.% soot that is the product of the primary synthesis of C60. The composite has been produced by means of mechanical alloying and sintered by Spark Plasma Sintering (SPS). The characterization methods include XRD, SEM and TEM. The C60 and C70 withstand mechanical alloying, SPS, and thermomechanical processing and act as a control agent during mechanical alloying. The results show that the mechanically alloyed and SPS product is a nanostructured composite. A larger amount of C60 is found in the sintered composite than in the original fullerene mix, which is attributed to an in-situ synthesis of C60 during the SPS process. The synthesis of C60 is presumably assisted by the catalytic nature of Fe and the electric field generated during the SPS process. In order to study the effect of high temperature, high strain, high heating and cooling rates on C60, the composite is subjected to a thermomechanical processing; demonstrating that some of the C60 resists the above described environment and some of it partially transforms into diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Harris, P. J. F., 1st ed. (Cambridge, Cambridge University Press, 1999).Google Scholar
2. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R. F. and Smalley, R. E., Nature. 318, 162 (1985).CrossRefGoogle Scholar
3. Iijima, S. Nature. 354, 56 (1991).CrossRefGoogle Scholar
4. Ru, Q., Okamoto, M., Kondo, Y., Takayanagi, K. Chem. Phys. Lett. 259, 425, (1996).CrossRefGoogle Scholar
5. Ugarte, D. Nature. 359, 707 (1992).CrossRefGoogle Scholar
6. Terrones, H., Terrones, M. J. Phys. Chem. Solids. 58, 1789 (1997).CrossRefGoogle Scholar
7. Krätschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D. R., Nature. 347, 354 (1990).CrossRefGoogle Scholar
8. Umemoto, M., Masuyama, K. and Raviprasad, K. Mater, Sci. Forum, 47, 235 (1997).Google Scholar
9. Robles Hernandez, F. C., “Producción y Caracterización de Compósitos Metal-C (donde; Metal=Al o Fe y C=grafito o fullereno) Obtenidos a Partir de Polvos de Aleado Mecánico”, MSc. Thesis, Instituto Politecnico Nacional, Mexico, 1999.Google Scholar
10. Garibay-Febles, V., Calderon, H. A., Robles-Hernández, F. C., Umemoto, M., Masuyama, K., Cabañas-Moreno, J. G., Mats. and Manufac. Proc. 15, 547, (2000).CrossRefGoogle Scholar
11. Liu, Z.G. et al., J. of Phys. and Chem. of Sol. 61 1119 (2000).CrossRefGoogle Scholar
12. Díaz Barriga Arceo, L. et al., J. Alloys Compd. 434–435, 799 (2007).CrossRefGoogle Scholar
13. Díaz Barriga-Arceo, L. et al., J. Phys.: Condens. Matter, 16, S2273 (2004).Google Scholar
14. Benjamin, J. S., Mater. Sci. Forum. 88–90, 1 (1992).CrossRefGoogle Scholar
15. Gilman, P.S. and Benjamin, J.S., Ann. Rev. Mater. Sci. 13, 279 (1983).CrossRefGoogle Scholar
16. Suryanarayana, C. Prog. Mater Sci. 46, 1, (2001).CrossRefGoogle Scholar
17. Guerrero-Paz, J. et al., Mats. Sci. Forum, 360–362, 317 (2001).CrossRefGoogle Scholar
18. Hafner, J. H., Chem. Phys. Lett. 296, 195 (1998).CrossRefGoogle Scholar
19. Dai, H. et. al., Chem. Phys. Lett. 260, 471 (1996).CrossRefGoogle Scholar
20. Gou, T. et. al., Chem. Phys. Lett. 243, 49 (1995).Google Scholar
21. Zhou, W. et. al., Chem. Phys. Lett. 350, 6 (2001).CrossRefGoogle Scholar
22. Gogotsi, Y., Naguib, N., Libera, J. A., Chem. Phys. Lett. 365, 354 (2002).CrossRefGoogle Scholar
23. Tsang, S. C., Chen, Y. K., Harris, P. J. F., Green, M. L. H., Nature. 372, 159 (1994).CrossRefGoogle Scholar
24. Tsang, S. C., Harris, P. J. F., Green, M. L. H., Nature. 362, 520 (1993).CrossRefGoogle Scholar
25. Sun, L. et al., Science. 312, 1199, (2006).CrossRefGoogle Scholar
26. Qian, L. et. al. Nano Lett., 8, 4539 (2008).Google Scholar
27. Robles Hernandez, F. C., Calderon, H. A., under review, submitted August 2009.Google Scholar
28. Ajayan, P. M., Tous, J. M., Nature. 447, 1066 (2007).CrossRefGoogle Scholar
29. Kim, S. N., Rusling, J. F., Papadimitrakopoulos, F. Adv. Mater. 19, 3214 (2007).CrossRefGoogle Scholar
30. Hulbert, D. M., Anders, A., Dudina, D. V., Andersson, J., Jiang, D., Unuvar, C., Anselmi-Tamburini, U., Lavernia, E. J., Mukherjee, A. K., J. Appl. Phys. 104, 033305 (2008).CrossRefGoogle Scholar
31. Hulbert, D. M. et al., Scripta Materialia. 60, 835 (2009).CrossRefGoogle Scholar
32. Shen, J., Zhang, F. M., Sun, J. F., Zhu, Y. Q., McCartney, D. G., Nanotechnol. 17, 2187 (2006).CrossRefGoogle Scholar
33. Cullity, B. D., Elements of X-Ray Diffraction, 1st ed. (Asddison-Wesley Puublishing Company, Inc., United States of America, 1956).Google Scholar
34. Nikolussi, M. et al., Scr. Mater. 59, 814 (2008).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis of Fullerene by Spark Plasma Sintering and Thermomechanical Transformation of Fullerene Into Diamond on Fe-C Composites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Synthesis of Fullerene by Spark Plasma Sintering and Thermomechanical Transformation of Fullerene Into Diamond on Fe-C Composites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Synthesis of Fullerene by Spark Plasma Sintering and Thermomechanical Transformation of Fullerene Into Diamond on Fe-C Composites
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *