Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54vk6 Total loading time: 0.223 Render date: 2022-08-15T03:33:19.495Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Synthesis and Thermoelectric Properties of AgBi3S5

Published online by Cambridge University Press:  01 February 2011

Jun-Ho Kim
Affiliation:
Department of Chemistry
Daniel Bilc
Affiliation:
Department of Physics and Astronomy, Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824.
Sim Loo
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824.
Jarrod Short
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824.
S. D. Mahanti
Affiliation:
Department of Physics and Astronomy, Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824.
Tim Hogan
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824.
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry
Get access

Abstract

The known mineral Pavonite AgBi3S5 shows a complex structure composed of NaCl type fragments but has not been studied from the thermoelectric point of view. We present initial results on the synthesis and themoelectric properties of synthetic AgBi3S5, which shows n-type metallic conductivity. In addition, the examination of the solid solutions AgSbxBi3-xS5 (x=0.3) is reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. CRC Handbook of thermoelectric materials. Rowe, D.M.. Ed., CRC Press, Inc.: Boca Raton, FL, 1995 Google Scholar
2. Chung, D-.Y.; Hogan, T.; Brazis, P. W.; Kannewurf, C. R.; Bastea, M.; Uher, C.; Kanatzidis, M. G. Science 2000, 287, 10241027.CrossRefGoogle Scholar
3. Chung, D.-Y.; Choi, K.–S; Iordanidis, L; Schindler, J.L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher, C.; Kanatzidis, M. G. Chem. Mater., 1997, 9, 30603071.CrossRefGoogle Scholar
4. Chung, D.-Y.; Jobic, S.; Hogan, T.; Kannewurf, C. R.; Brec, R.; Rouxel, J.; Kanatzidis, M. G. J. Amer. Chem. Soc. 1997, 119, 25052515 CrossRefGoogle Scholar
5. Mrotzek, A; Chung, D.–Y. Hogan, T; Kanatzidis, M. G. J. Mater. Chem., 2000, 10, 16671672 CrossRefGoogle Scholar
6. Choi, K.–S.; Chung, D.–Y.; Mrotzek, A.; Brazis, P.; Kannewurf, C. R.; Uher, C.; Chen, W.; Hogan, T.; Kanatzidis, M. G. Chem. Mater. 2001, 13 (3): 756764 CrossRefGoogle Scholar
7. Iordanidis, L.; Brazis, P. W.; Kyratsi, T.; Ireland, J.; Lane, M.; Kannewurf, C. R. Chen, W.; Dyck, J. S.; Uher, C.; Ghelani, N. A.; Hogan, T.; Kanatzidis, M. G. Chem. Mater. 2001, 13, 622633 CrossRefGoogle Scholar
8. Hsu, K.–F.; Chung, D.–Y.; Lal, S.; Mrotzek, A.; Kyratsi, T.; Hogan, T.; Kanatzidis, M. G. J. Am. Chem. Soc., 2002, 124, 24102411.CrossRefGoogle Scholar
9. McCarthy, T. J.; Ngeyi, S.-P.; Liao, J.-H.; DeGroot, D.; Hogan, T.; Kannewurf, C. R.; Kanatzidis, M. G. Chem. Mater. 1993, 5, 331340 CrossRefGoogle Scholar
10. McCarthy, T. J.; Tanzer, T. A.; Kanatzidis, M. G. J. Am. Chem. Soc. 1995, 117, 12941301.CrossRefGoogle Scholar
11. a) McCarthy, T. J.; Tanzer, T. A.; Chen, L.H.; Iordanidis, L.; Hogan, T; Kannewurf, C. R.; Uher, C; Chen, B; Kanatzidis, M. G. Chem. Mater. 1996, 8, 14651474.Google Scholar
b) Chen, B; Uher, C; Iordanidis, L; Kanatzidis, M. G. Chem. Mater. 1997, 9, 16551658.CrossRefGoogle Scholar
12. a) Wernick, J.H. American Mineralogist. 1960, 45, 591598 Google Scholar
b) Wernick, J.H. Journal of Materials Science. 1968, 3, 498501 Google Scholar
13. Mumme, W.G. Neues Jahrbuch fuer Mineralogie 1990, 193204 Google Scholar
14. Herbert, H.K.; Mumme, W.G. Neues Jahrbuch fuer Mineralogie. 1981, 6980 Google Scholar
15. Makovicky, E.; Mumme, W.G.; Watts, J.A. Can. Mineralogist 1977, 15, 339348 Google Scholar
16. Singh, D., Planewaves, Pseudopotentials, and the LAPW method (Kluwer Academic, Boston, 1994).CrossRefGoogle Scholar
17. Hohenberg, P., and Kohn, W., Phys. Rev., 1964, 136, B864;CrossRefGoogle Scholar
Kohn, W., and Sham, L., Phys. Rev., 1965, 140, A1133 CrossRefGoogle Scholar
18. Kubelka-Munk function: α/S = (1-R)2/2R, where R is the reflectance at a given wavenumber, α is the absorption coefficient, and S is the scattering coefficient.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis and Thermoelectric Properties of AgBi3S5
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Synthesis and Thermoelectric Properties of AgBi3S5
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Synthesis and Thermoelectric Properties of AgBi3S5
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *