Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-zts5g Total loading time: 0.155 Render date: 2021-10-23T21:46:21.800Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Synthesis and Structural Characterization of Sol-Gel Derived Barium Zirconium Titanate Thin Films

Published online by Cambridge University Press:  01 February 2011

A. Dixit
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR-00931-3343
A. Savvinov
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR-00931-3343
S.B. Majumder
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR-00931-3343
R.S. Katiyar R. Guo
Affiliation:
Material Research Laboratory, Pennsylvania State University, University Park, PA 16802
A.S. Bhalla
Affiliation:
Material Research Laboratory, Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Barium zirconium titanate (BZT) thin films are attractive candidates for dynamic random access memories and tunable microwave devices. In the present work a wide range of Zr doped BaTiO3 thin films have been prepared by sol-gel technique. X-ray diffraction and micro-Raman scattering studies confirmed the structural phases in the powder and film of BZT and various structural transitions of BaTiO3 as a function of different Zr content compared well with the published result on ceramics and single crystalline BZT. The deposited films had smooth, crackfree and homogeneous microstructure and Zr content has strong influence on the evolution of the microstructures of the films. Some selected compositions of these films were characterized in terms of their dielectric properties and phase transition behavior. BZT film with 20 at % Zr had a ferroelectric to paraelectric transition in the vicinity of room temperature. Efforts are underway to optimize the annealing condition and grow epitaxial BZT films, with various Zr contents, on a suitable single-crystalline substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Farhi, R., Marssi, M.E., Simon, A., and Ravez, J., Eur. Phys. J. B 9, 599, (1999).CrossRefGoogle Scholar
2. Yu, Z., Guo, R., Bhalla, A.S., Appl. Phys. Lett. 77, 1535, (2000).CrossRefGoogle Scholar
3. Majumder, S.B., Dixit, A., Savvinov, A., Guo, R., Bhalla, A.S., and Katiyar, R.S., Materials Letters, (in press)Google Scholar
4. Dobal, P.S., Dixit, A., Katiyar, R.S., Yu, Z., Guo, R., and Bhalla, A.S., Journal of Raman Spectroscopy, 32, 69, (2001).3.0.CO;2-3>CrossRefGoogle Scholar
5. Jeffe, B., Cook, W.R., and Jaffe, H., Piezoelectric Ceramics, Academic Press: London, 1971.Google Scholar
6. Louden, R., Adv. Phys. 13, 423 (1964)CrossRefGoogle Scholar
7. Robins, L. H., Kaiser, D. L., Rotter, L. D., Schenck, P. K., Stauf, G. T., Rytz, D., J. Appl. Phys. 76 (11) 7487, 1994 CrossRefGoogle Scholar
8. Wang, F., Uusimaki, A., Leppavuori, S., Karmaneko, S.F., Dedyk, A.I., Sakharov, V.I., and Sernkov, I.T., J. Mater. Res 13, 1243, (1998).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis and Structural Characterization of Sol-Gel Derived Barium Zirconium Titanate Thin Films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Synthesis and Structural Characterization of Sol-Gel Derived Barium Zirconium Titanate Thin Films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Synthesis and Structural Characterization of Sol-Gel Derived Barium Zirconium Titanate Thin Films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *