Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-25T21:05:52.648Z Has data issue: false hasContentIssue false

Synthesis and Structural Characterization of Organically-Modified Microporous Silicates

Published online by Cambridge University Press:  10 February 2011

F. Babonneau
Affiliation:
Université Pierre et Marie Curie / CNRS, Chimie de la Matière Condensée, Paris, France
L. Leite
Affiliation:
Université Pierre et Marie Curie / CNRS, Chimie de la Matière Condensée, Paris, France
S. Fonlupt
Affiliation:
Université Pierre et Marie Curie / CNRS, Chimie de la Matière Condensée, Paris, France
F. Ribot
Affiliation:
Université Pierre et Marie Curie / CNRS, Chimie de la Matière Condensée, Paris, France
L. Bergogne
Affiliation:
Université Pierre et Marie Curie / CNRS, Chimie de la Matière Condensée, Paris, France
C. Roux
Affiliation:
Université Pierre et Marie Curie / CNRS, Chimie de la Matière Condensée, Paris, France
Get access

Abstract

Organically-modified silicates have been synthesized from RSi(OEt)3 (R = CH3, C2H5, C8H17, CH2=CH, C6H5) and TEOS under acidic conditions, in the presence of cethyltrimethylammonium (CTAB). The introduction of RSiO1.5 units with R/Si =0.2, affects the ordering of the expected hexagonal silicate phase, except when R = C6H5. The sample containing phenyl functions was thus submitted to surfactant extraction; calcination at 350°C appears to be more efficient, and less disruptive for the network ordering than a washing procedure in ethanol. Nitrogen adsorption measurements on the hexagonally ordered calcined sample that still contains phenyl groups, yields a type I isotherm, typical of a microporous solid. BET method leads to a surface area of 1000 m2/g and a pore volume of 0.32 cm3/g.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T-W., Olson, D. H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L., J. Am. Chem. Soc. 114, 10834 (1992).10.1021/ja00053a020Google Scholar
2 Sayari, A., Chem. Mater. 8, 1840 (1996).10.1021/cm950585+Google Scholar
3 Sutra, P., Brunel, D., J. Chem. Soc. Chem. Comm.Google Scholar
4 Mercier, L. and Pinnavaia, T.J., Adv. Mater. 9, 500 (1997).Google Scholar
5 Liu, J., Feng, X., Fryxell, G.E., Wang, L.-Q., Kim, A.Y., Gong, M., Adv. Mater., 10, 161 (1998).Google Scholar
6 Burkett, S.L., Sims, S.D., Mann, S., J. Chem. Soc. Chem. Comm. 1367 (1996)Google Scholar
7 Fowler, C.E., Burkett, S.L., Mann, S., J. Chem. Soc. Chem. Comm. 1769 (1997)Google Scholar
8 Macquarrie, D.J., J. Chem. Soc. Chem. Comm. 1961 (1996)Google Scholar
9 Macquarrie, D.J., J. Chem. Soc. Chem. Comm. 1781 (1997)Google Scholar
10 Lim, M. H., Blanford, C.F., Stein, A., J. Am. Chem. Soc. 119, 4090 (1997).10.1021/ja9638824Google Scholar
11 Lim, M. H., Blanford, C.F., Stein, A., Chem. Mater. 10, 467 (1998).10.1021/cm970713pGoogle Scholar
12 Tavev, P.T., Pinnavaia, T.J., Science, 267, 865 (1995).Google Scholar
13 Schmidt, H., Scholze, H., Kaiser, A., J. Non Cryst. Solids 63, 1 (1984).Google Scholar
14 Huo, Q., Margolese, D.I., Stucky, G.D., Chem. Mater. 8, 1147 (1996).10.1021/cm960137hGoogle Scholar
15 Delattre, L., Babonneau, F., Mat. Res. Soc. Symp. Proc. 346, 365 (1994)10.1557/PROC-346-365Google Scholar
16 Barrett, E.P., Joyner, L.G., Halenda, P.H., J. Am. Chem. Soc. 73, 373 (1951)Google Scholar