Hostname: page-component-6b989bf9dc-94dtm Total loading time: 0 Render date: 2024-04-13T05:09:29.045Z Has data issue: false hasContentIssue false

Synthesis and Sensing Properties of N-doped ZnO Nanorod Arrays on Quartz

Published online by Cambridge University Press:  01 February 2011

Boqian Yang
Affiliation:, University of Puerto Rico, Rio Piedras, Physics department, PO Box 23343, San Juan, 00931, Puerto Rico
Xiaoyan Peng
Affiliation:, University of Puerto Rico, Rio Piedras, Physics department, San Juan, Puerto Rico
Hongxin Zhang
Affiliation:, University of Puerto Rico, Rio Piedras, Physics department, San Juan, Puerto Rico
Peterxian Feng
Affiliation:, United States
Marc Achermann
Affiliation:, University of Massachusetts, Physics, Amherst, Massachusetts, United States
Get access


Using different pressures of nitrogen, N-doped ZnO nanorod arrays of various densities have been synthesized on quartz substrates by pulsed laser deposition techniques. The nanorods grow preferentially perpendicular to the quartz surface. X-ray diffraction patterns revealed some degradation of the crystal structure at elevated nitrogen pressures. High concentrations of nitrogen doping in ZnO nanorods were estimated by X-ray photoelectron spectroscopy. Raman scattering spectra confirmed the wurtzite structure of N-doped ZnO nanorods. A prototype sensor based on the N-doped ZnO nanorod arrays demonstrates a linear dependence of the conductivity with operating temperature and pressure of a test gas pollutant.

Research Article
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1 Konenkamp, R., Word, R.C. and Schlegel, C. 2004 Appl. Phys. Lett. 85, 6004 Google Scholar
2 Park, W.I., Kim, J.S., Yi, G.-C., Bae, M.H. and Lee, H.-J. 2004 Appl. Phys. Lett. 85, 5052 Google Scholar
3 Kang, B S, Ren, F, Heo, Y W, Tien, L C and Norton, D P, Pearton, S J. 2005 Appl. Phys. Lett. 86, 112105 Google Scholar
4 Huang, M H, Mao, S, Feick, H, Yan, H Q, Wu, Y Y, Kin, H, Weber, E, Russo, R and Yang, P D 2001 Science 292, 1897 Google Scholar
5 Kar, S, Pal, B N, Chaudhuri, S and Chakravorty, D 2006 J. Phys. Chem. B 110, 4605 Google Scholar
6 Tian, Z R R, Voigt, J A, Liu, J, Mckenzie, B, McDermott, M J, Rodriguez, M A, Konishi, H and Xu, H F 2003 Nat. Mater. 2, 821 Google Scholar
7 Dev, A, Kar, S, Chakrabarti, S and Chaudhuri, S 2006 Nanotechnology 17, 1533 Google Scholar
8 Look, D.C., Reynolds, D.C., Litton, C.W., Jones, R.L., Eason, D.B. and Cantwell, G. 2002 Appl. Phys. Lett. 81, 1830 Google Scholar
9 Natsume, Y., Sakata, H., and Hirayama, T. 1992 J. Appl. Phys. 9, 4203 Google Scholar
10 Iwata, K., Fons, P., Yamada, A., Matsubara, K. and Niki, S., 2000 Journal of Crystal Growth, 209, 526 Google Scholar
11 Sharma, P. Gupta, A. Rao, K. V. Owens, F. J. Sharma, R. Ahuja, R. Guillen, J. M. O. Johansson, B. and Gehring, G. A. 2003 Nat. Mater. 2, 673 Google Scholar
12 Myong, S. Y., Steinhauser, J., Schluchter, R. et al. , 2007 Solar Energy Materials & Solar Cells, 91, 1269 Google Scholar
13 Boqian, Yang, Peterxian, Feng, Ashok, Kumar, Katiyar, R.S and Achermann, Marc, 2009 J. Phys. D: Appl. Phys. 42, 195402 Google Scholar
14 Dai, Z.R. Pan, Z.W. Wang, Z.L. 2003 Advanced Functional Materials 13, 9 Google Scholar
15 Yang, Boqian, Kumar, Ashok, Zhang, Hongxin, Feng, Peterxian, and Katiyar, R.S. 2009 J. Phys. D: Appl. Phys. 42, 045415 Google Scholar
16 Yang, Boqian, Kumar, Ashok, Feng, Peter, and Katiyar, R.S. 2008, Applied Physics Lett. 92, 233112 Google Scholar
17 Damen, T.C. Porto, S.P.S. and Tell, B. 1966 Phys. Rev. 142, 570; J.M., Calleja and M. Cardona, 1977 Phys. Rev. B 16, 3753Google Scholar
18 Yadav, Harish Kumar, Sreenivas, K. Gupta, Vinay, and Katiyar, R.S. 2008 Journal of Applied Physics 104, 053507 Google Scholar
19 Zhang, Hongxin, Yang, Boqian, and Feng, Peterxian, 2008 Journal of Nanomaterials 2008, 957935 Google Scholar