Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-12T02:28:14.275Z Has data issue: false hasContentIssue false

Synthesis and Properties of Lanthanide-Exchanged Preyssler's Heteropolyanions

Published online by Cambridge University Press:  15 February 2011

Mark R. Antonio
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439–4831, USA
J. Malinsky
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439–4831, USA
L. Soderholm
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439–4831, USA
Get access

Abstract

Na+ in the Preyssler heteropolytungstate anion [NaP5W30O110]14− can be exchanged for a trivalent lanthanide ion. The potential significance of this new class of lanthanide heteropolyanions relates to their applications in catalysis science. This view follows from the fact that Keggin heteropolyanions and their free acids are used as heterogeneous solid catalysts and homogeneous solution catalysts. We describe synthetic conditions that lead to the incorporation of Ce3+ and Pr3+ within the Preyssler anion, and the coprecipitation of Ce3+ and the Preyssler anion. Initial studies indicate that the latter, coprecipitated, material deserves study for bifunctional catalytic activity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pope, M.T., Heteropoly and Isopoly Oxometalates (Springer-Verlag, Berlin, 1983).Google Scholar
2. Pope, M.T., in Comprehensive Coordination Chemistry, Vol.3, edited by Wilkinson, G., Gillard, R.D. and McCleverty, J.A. (Pergamon Press, New York, 1987), pp. 10231058.Google Scholar
3. Pope, M.T. and Müller, A., Angew. Chem. Int. Ed. Engl. 30, 34 (1991).Google Scholar
4. Misono, M., in Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity, edited by Pope, M.T. and Müller, A. (Kluwer Academic, Dordrecht, The Netherlands, 1994) pp. 255265; R.G.Finke, ibid., pp. 267–280; J.H.Grate, D.R.Hamm and S.Mahajan, in Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity, edited by M.T. Pope and A. Müller (Kluwer Academic, Dordrecht, The Netherlands, 1994)., pp. 281–305; R.Neumann, in Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity, edited by M.T. Pope and A. Müller (Kluwer Academic, Dordrecht, The Netherlands, 1994)., pp. 307–313; E.Cadot, C.Marchal, M.Fournier, A.Teze and G.Herve, in Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity, edited by M.T. Pope and A. Müller (Kluwer Academic, Dordrecht, The Netherlands, 1994)., pp.315–326; E.Papaconstantinou, A.loannidis A.Hiskia P.Argitis, D.Dimotikali and S.Korres, in Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity, edited by M.T. Pope and A. Müller (Kluwer Academic, Dordrecht, The Netherlands, 1994)., pp. 327.335; C.L.Hill, G.–S.Kim, C.M.Prosser-Mccartha and D.Judd, in Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity, edited by M.T. Pope and A. Müller (Kluwer Academic, Dordrecht, The Netherlands, 1994)., pp. 359–371.Google Scholar
5. Mizuno, N. and Misono, M., J. Molecular Catalysis 86, 319 (1994).Google Scholar
6. Misono, M., Catal. Rev.—Sci. Eng. 29, 269 (1987).Google Scholar
7. Kozhevnikov, I.V. and Matveev, K.I., Russian Chemical Reviews 51, 1075 (1982)Google Scholar
8. Sattari, D. and Hill, C.L., J. Am. Chem. Soc. 115,469 (1993)Google Scholar
9. Peacock, R.D. and Weakley, T.J.R., J. Chem. Soc. (A) 1971. 1836.Google Scholar
10. Baidala, P., Smurova, V.S., Torchenkova, E.A. and Spitsyn, V. I., Doklady Chemistry 197, 430 (1971), Engl. Trans.Google Scholar
11. Torchenkova, E.A., Baidala, P., Smurova, V.S. and Spitsyn, V.I., Doklady Chemistry 199, 568 (1971), Engl. Trans.Google Scholar
12. Dexter, D.D. and Silverton, J.V., J. Am. Chem. Soc. 90, 3589 (1968).Google Scholar
13. Qingyin, W., Enbo, W. and Jingfu, L., Polyhedron 12, 2563 (1993).Google Scholar
14. Haraguchi, N., Okaue, Y., Isobe, Y. and Matsuda, Y., Inorg. Chem. 33, 1015 (1994).Google Scholar
15. Shiozaki, R., Goto, H. and Kera, Y., Bull. Chem. Soc. Jpn. 66, 2790 (1993).Google Scholar
16. Liu, J., Liu, S., Qu, L., Pope, M.T. and Rong, C., Trans. Met. Chem. 17, 311 (1992).Google Scholar
17. Creaser, I., Heckel, M.C., Neitz, R.J. and Pope, M.T., Inorg. Chem. 32, 1573 (1993).Google Scholar
18. Alizadeh, M.H., Harmalker, S.P., Jeannin, Y., J. Martin-Frere and Pope, M.T., J. Am. Chem. Soc. 107, 2662 (1985).Google Scholar
19. Yokoyama, C. and Misono, M., Bull. Chem. Soc. Jpn. 67, 557 (1994).Google Scholar
20. Harrup, M.K. and Hill, C.L., Presented at the 208th National Meeting of the American Chemical Society, Washington, D.C., August 1994; paper INOR 567.Google Scholar
21. Siedle, A.R., Newmark, R.A., Gleason, W.B., Skarjune, R.P., Hodgson, K.O., Roe, A.L. and Day, V.W., Solid State Ionics 26, 109 (1988). A.R.Siedle, R.A.Newmark, K.A.Brown-Wensley, R.P.Skarjune, L.C.Haddad, K.O.Hodgson and A.L.Roe, Organometallics 7, 2078 (1988). A.R.Siedle, C.G.Markell, P.A.Lyon, K.O.Hodgson and A.L.Roe, Inorg. Chem. 26, 219 (1987)Google Scholar
22. Klemperer, W.G. and Zhong, B., Inorg. Chem. 32, 5821 (1993).Google Scholar
23. Lin, Y., Nomiya, K. and Finke, R.G., Inorg. Chem. 32, 6040 (1993)Google Scholar
24. Antonio, M.R., in Encyclopedia of Materials Characterization: Surfaces. Interfaces. Thin Films, edited by Brundle, C. R., Evans, C. A. Jr., and Wilson, S. (Butterworth- Heinemann, Boston, 1992), p. 214.Google Scholar
25. Antonio, M.R., Soderholm, L., Muntean, J. and Liu, G., in preparation (1994).Google Scholar
26. Sunstrom, J.E., IV, Kauzlarich, S.M. and Antonio, M.R., Chem. Mater. 5, 182 (1993).Google Scholar
27. Hu, Z., Bertram, S. and Kaindl, G., Phys. Rev. B, 49, 39 (1994).Google Scholar
28. Antonio, M.R. and Soderholm, L., Inorg. Chem., in the press (1994).Google Scholar