Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T13:01:36.429Z Has data issue: false hasContentIssue false

Synthesis and Characterization of the First 1:2 Ordered Perovskite Ruthenate

Published online by Cambridge University Press:  01 February 2011

Job Rijssenbeek
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL 60208-3113
Sylvie Malo
Affiliation:
Laboratoire CRISMAT-ISMRA, Université de Caen, 6 Boulevard du Maréchal Juin, 14050 Caen, Cedex, France
Takashi Saito
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611, Japan
Vincent Caignaert
Affiliation:
Laboratoire CRISMAT-ISMRA, Université de Caen, 6 Boulevard du Maréchal Juin, 14050 Caen, Cedex, France
Masaki Azuma
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611, Japan
Mikio Takano
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611, Japan
Kenneth R. Poeppelmeier
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL 60208-3113
Get access

Abstract

Perovskite-like mixed metal ruthenates are of interest owing to their varied electronic and magnetic properties, which are heavily dependent on the ordering of the transition metals. We report the synthesis and structural characterization of the first 1:2 ordered perovskite ruthenate, Sr3CaRu2O9. The structure was determined from a combination of powder X-ray, electron and neutron diffraction data and is characterized by a 1:2 ordering of Ca2+ and Ru5+ over the sixcoordinate B-sites of the perovskite lattice. Sr3CaRu2O9 is the first example of this structure-type to include a majority metal with d electrons (Ru(V), d3). The relationship of this material to the K2NiF4-type Sr1.5Ca0.5RuO4 (i.e., Sr3CaRu2O8) highlights the dramatic effects of the ruthenium valence on the resultant structure. Remarkably, these two structures can be quantitatively interconverted by the appropriate choice of reaction temperature and atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Anderson, M.T., Greenwood, K.B., Taylor, G.A. and Poeppelmeier, K.R., Prog. Solid State Chem., 22, 197, (1993).Google Scholar
2 Galasso, F. and Pyle, J., Inorg. Chem., 2, 482 (1963).Google Scholar
3 Alonso, J.A., Mzayek, E. and Rasines, I., Mater. Res. Bull., 22, 69 (1987).Google Scholar
4 Cava, R.J., J. Mater. Chem., 11, 54 (2001).Google Scholar
5 Davies, P.K., Tong, J.Z. and Negas, T., J. Amer. Chem. Soc., 80, 1727 (1997).Google Scholar
6 Rijssenbeek, J.T., Malo, S., Caignaert, V. and Poeppelmeier, K.R., J. Amer. Chem. Soc., 124, 2090 (2002).Google Scholar
7 Kraus, W. and Nolz, G., J. Appl. Crystallogr., 29, 301 (1996).Google Scholar
8 Larson, A.C. and Von Dreele, R.B., Los Alamos National Laboratory Report LAUR 86748 (1994).Google Scholar
9 Nakatsuji, S., Ando, T., Mao, Z. and Maeno, Y., Physica C, 261, 949 (1999).Google Scholar
10 Wilkens, J. and Müller-Buschbaum, H., J. Alloys Compd., 177, C31 (1991).Google Scholar
11 Anderson, M.T. and Poeppelmeier, K.R., Chem. Mater., 3, 476 (1991).Google Scholar
12 Jacobson, A.J., Collins, B.M. and Fender, B.E.F., Acta Crystallogr., B24, 1968 (1982).Google Scholar
13 Levin, I., Bendersky, L.A., Cline, J.P., Roth, R.S. and Vanderah, T.A., J. Solid State Chem., 150, 43 (2000).Google Scholar
14 Glazer, A.M., Acta Crystallogr., B28, 3384 (1972).Google Scholar
15 Hervieu, M., Studer, F. and Raveau, B., J. Solid State Chem., 22, 273 (1977).Google Scholar
16 Dussarrat, C., Fompeyrine, J. and Darriet, J., Eur. J. Solid State Inorg. Chem., 32, 3 (1995).Google Scholar
17 Kanbayashi, A., J. Phys. Soc. Jpn., 41, 1876 (1976).Google Scholar
18 Battle, P.D. and Macklin, W.J., J. Solid State Chem., 52, 138 (1984).Google Scholar