Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-18T13:23:54.807Z Has data issue: false hasContentIssue false

Surface Mobilities in Laser-Processed Polysilicon Films

Published online by Cambridge University Press:  15 February 2011

R. C. Frye
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
K. K. Ng
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Surface mobilities in laser-processed polysilicon films were measured using silicon-gate n-channel thin-film transistors of varying dimensions. The apparent surface mobility inferred from transconductance measurements was found to be a decreasing function of channel length. For very short (~0.3/µm) channels, this mobility approaches the surface mobility of identical devices fabricated on bulk silicon. Furthermore, the temperature dependence of the surface mobilities in polycrystalline and bulk films was found to be identical.

A novel EBIC technique was employed to examine the surface potential of transistors in operation. These measurements indicate a high degree of spatial nonuniformity in the inversion layer of polycrystalline films arising from the grain boundary region. A simple model of the transistors is presented which explains the geometry dependent surface mobility and its temperature dependence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bartelink, D., these procedings.Google Scholar
2. Taylor, W. E., Odell, N. H. and Fan, H. Y., Phys. Rev. 88, 867 (1952).CrossRefGoogle Scholar
3. Kamins, T. I., J. Appl. Phys. 42 4357 (1971).CrossRefGoogle Scholar
4. Seto, J., J. Appl. Phys. 46 5247 (1975).CrossRefGoogle Scholar
5. Ghosh, A. K., Rose, A., Maruska, H. P., Eustace, D. J. and Feng, T., Appl. Phys. Lett. 37, 544 (1980).CrossRefGoogle Scholar
6. Seager, C. H. and Castner, T. G., J. Appl. Phys. 49, 3879 (1978).CrossRefGoogle Scholar
7. Seager, C. H. and Pike, G. E., Appl. Phys. Lett. 37, 747 (1980).CrossRefGoogle Scholar
8. Depp, S. W., Huth, B. G., Juliana, A. and Koepcke, R. W., these proceedings.Google Scholar
9. Salama, C.A.T. and Young, L., Solid State Electron. 10, 473 (1967).CrossRefGoogle Scholar
10. Kamins, T. I., Solid State Electron. 15, 789 (1972).CrossRefGoogle Scholar
11. Matsui, M., Shiraki, Y., Katayama, Y., Kobayashi, K. L. I., Shintani, A. and Maruyama, E., Appl. Phys. Lett. 37, 936 (1980).CrossRefGoogle Scholar
12. Laff, R. A. and Hutchins, G. L., IEEE Trans. Electron Devices, ED–21, 743 (1974).CrossRefGoogle Scholar
13. Gat, A., Gerzberg, L., Gibbons, J. F., Magee, T. J., Peng, J. and Hong, J. D., Appl. Phys. Lett. 33, 775 (1978).CrossRefGoogle Scholar
14. Lee, K. F., Gibbons, J. F., Saraswat, K. C. and Kamins, T. I., Appl. Phys. Lett. 35, 173 (1979).CrossRefGoogle Scholar
15. Kamins, T. I., Lee, K. F., Gibbons, J. F. and Saraswat, K. C., IEEE Trans. Electron Devices, ED–27, 290 (1980).CrossRefGoogle Scholar
16. Tasch, A. F. Jr. Holloway, T. C., Lee, K. F. and Gibbons, J. F., Electr. Lett. 15, 437 (1979).CrossRefGoogle Scholar
17. Lam, H. W., Tasch, A. F. Jr. and Holloway, T. C., IEEE Electr. Device Lett. EDL–1, 206 (1980).CrossRefGoogle Scholar
18. Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., in: Laser and Electron-Beam Solid Interactions and Materials Processing, Hess, Gibbons and Sigmon, , eds. (Elsevier North Holland, New York, 1981) p. 463.Google Scholar
19. Lam, H. W., Tasch, A. F. Jr. Holloway, T. C., Lee, K. F. and Gibbons, J. F., IEEE Electr. Device Lett. EDL–1, 99, (1980).CrossRefGoogle Scholar
20. Lee, H. S., Appl. Phys. Lett. 38, 770 (1981).CrossRefGoogle Scholar
21. Ng, K. K., Cellar, G. K., Povilonis, E. I., Frye, R. C., Leamy, H. J. and Sze, S. M., IEEE Electr. Device Lett. EDL–2, 316 (1981).CrossRefGoogle Scholar
22. Shah, R. R., Lam, H. W., Crosthwait, L. and Tasc, A. F. Jr., in: Laser and Electron-Beam Processing of Electronic Materials, Anderson, , Cellar, and Rozgonyi, , eds. (The Electrochem. Soc., Princeton, NJ, 1980) p. 235.Google Scholar
23. Kamins, T. I. and Pianetta, P. A., IEEE Electr. Device Lett. EDL–1, 214 (1980).CrossRefGoogle Scholar
24. Biegelsen, D. K., Johnson, N. M., Bartelink, D. K. and Moyer, M. D. in: Laser and Electron-Beam Solid Interactions and Materials Processing, Hess, Gibbons and Sigmon, , eds. (Elsevier North Holland, New York, 1981) p. 487.Google Scholar
25. Frye, R. C. and Leamy, H. J., IEEE Electron Device Lett., in press.Google Scholar
26. Curtis, O. L., Srour, J. R. and Chin, K. Y., J. Appl. Phys. 45, 4506 (1974).CrossRefGoogle Scholar
27. Ausman, G. A. and McLean, F. B., Appl. Phys. Lett. 26, 173 (1975).CrossRefGoogle Scholar
28. Hughes, R. C., J. Chem. Phys. 55, 5442 (1971).CrossRefGoogle Scholar
29. Hughes, R. C., Solid-State Electron. 21, 251 (1978).CrossRefGoogle Scholar
30. Borkan, H. and Weimer, P. K., RCA Review, 24, 153 (1963).Google Scholar