Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T03:54:10.615Z Has data issue: false hasContentIssue false

Studying Structure of Metallic Superlattices by "Symmetric" and "Asymmetric" X-rAY Diffraction

Published online by Cambridge University Press:  15 February 2011

G. Gladyszewski
Affiliation:
Institute of Physics, Marie Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, POLAND.
Ph. Goudeau
Affiliation:
Laboratoire de Métallurgie Physique (Associé au CNRS, URA 131), Université de Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers CEDEX, FRANCE.
K.F. Badawi
Affiliation:
Laboratoire de Métallurgie Physique (Associé au CNRS, URA 131), Université de Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers CEDEX, FRANCE.
A. Naudon
Affiliation:
Laboratoire de Métallurgie Physique (Associé au CNRS, URA 131), Université de Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers CEDEX, FRANCE.
Get access

Abstract

"Symmetric" and "asymmetric" x-ray diffraction measurements are proposed as a tool for quantitative and complete determination of the superlattice structure. A general procedure which takes into account the atomic structure of the sublayers as well as structural disorder are presented. The "asymmetric" geometry using the "sin2psi" method is particularly emphasized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chang, L.L. and Giessen, B.C. (eds.), Synthetic Modulated Structures, Academic Press, New York, 1985.Google Scholar
2 Schuller, I.K., Phys.Rev.Lett. 44, 1597 (1980).Google Scholar
3 Mitura, Z. and Mikolajczak, P., J.Phys. F 18, 183 (1988).Google Scholar
4 Gladyszewski, G., Thin Solid Films 170, 99 (1989), and G. Gladyszewski, Thin Solid Films 204, 473 (1991).Google Scholar
5 Fullerton, E.E., Schuller, I.K., Vanderstraeten, H. and Bruynseraede, Y., Phys.Rev. B 45, 9292 (1992).Google Scholar
6 Stearns, M.B., Lee, C.H. and Groy, T.L., Phys.Rev. B 40, 8256 (1989).Google Scholar
7 Baumann, J.R., Liebemann, E., Simon, M. and Bucher, E., Superlattices and Microstructures 11, 445 (1992).Google Scholar
8 Gladyszewski, G., Mikolajczak, P., Mitura, Z. and Subotowicz, M., J.Phys.: Condens. Matter 1, 7795 (1989).Google Scholar
9 Gladyszewski, G., Goudeau, Ph., Naudon, A., Jaouen, C. and Pacaud, J., Appl.Surface Sci. 1993, in press.Google Scholar
10 Goudeau, Ph., Badawi, K.F., Naudon, A. and Gladyszewski, G., Appl.Phys.Lett. 62, 246 (1993).Google Scholar
11 Badawi, K.F., Naudon, A. and Goudeau, Ph., Appl.Surface Sci. 1993, in press.Google Scholar
12 Badawi, K.F., Goudeau, Ph., Pacaud, J., Jaouen, C., Delafond, J., Naudon, A. and Gladyszewski, G., Nucl.Instr. and Meth. B, 1993, in press.Google Scholar
13 Program written by Gladyszewski, G. and Mitura, Z., unpublished.Google Scholar