Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T18:07:28.198Z Has data issue: false hasContentIssue false

Study of the Zeeman Effect of Er3+ in GaAs:Er,O

Published online by Cambridge University Press:  10 February 2011

Dieter Haase
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Box 80 11 40, Federal Republic of Germany; A.Doernen@physik.uni-stuttgart.de
Achim Dörnen
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Box 80 11 40, Federal Republic of Germany; A.Doernen@physik.uni-stuttgart.de
Kenichiro Takahei
Affiliation:
NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugishi-shi, Kanagawa, 243-01, Japan; takahei@will.brl.ntt.jp
Akihito Taguchi
Affiliation:
NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugishi-shi, Kanagawa, 243-01, Japan; takahei@will.brl.ntt.jp
Get access

Abstract

We analyze the Zeeman effect of the 4/13/24/15/2 transition of Er3+ in GaAs:Er,O grown by metal-organic vapor-phase epitaxy. The photoluminescence spectrum has been assigned previously to one specific Er-O complex. The dominant optical transition at 1538 nm (6499.5 cm−1), which shows a full width at half maximum of only 0.05 cm−1, has been investigated by high-resolution Zeeman spectroscopy. A highly anisotropic Zeeman pattern is found which indicates the low symmetry of the underlying complex. A detailed analysis shows that the defect has a predominant rhombic symmetry C2v,. Additionally, smaller contributions of a crystal field with a monoclinic symmetry Clh are found. The results provide further arguments that an ErO2 complex is the responsible center observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pomrenke, C. S., Ennen, H., and Haydl, W., J. Appl. Phys. 59, 601 (1986).Google Scholar
2. Smith, R. S., Müller, H. D., Ennen, H.., Wennekers, P., and Maier, M., Appl. Phys. Lett. 50, 49 (1987).Google Scholar
3. Ennen, H., Wagner, J., Müller, H. D., and Smith, R. S., J. AppI. Phys. 61, 4877 (1987).Google Scholar
4. Thonke, K., Hermann, H. U., and Schneider, J., J. Phys. C 21, 5881 (1988).Google Scholar
5. Takahei, K. and Taguchi, A., J. AppI. Phys. 74, 1979 (1993).Google Scholar
6. Takahei, K. and Taguchi, A., Jpn. J. AppI. Phys. 33, 709 (1994).Google Scholar
7. Takahei, K. and Taguchi, A., AppI. Phys. Lett. 77, 1735 (1995).Google Scholar
8. Takahei, K. and Taguchi, A., J. Appl. Phys. 78, 5614 (1995).Google Scholar
9. Takahei, K., Taguchi, A., Horikoshi, Y., and Nakata, J., J. AppI. Phys. 76, 4332 (1994).Google Scholar
10. Lea, K. R., Leask, M. J. M., and Wolf, W. P., J. Phys. Chem. Solids 23. 1381 (1962).Google Scholar
11. Kaplyanskii, A. A., Opt. Spectrosc. 16, 329 (1964).Google Scholar
12. O'Donnell, K. P., Lee, K. M., and Watkins, C. D., Physica 116B, 258 (1982).Google Scholar
13. Thonke, K., Klemisch, H., 3. Weber, and Sauer, R., Phys. Rev. B 24, 5874 (1981).Google Scholar