Hostname: page-component-cd4964975-4wks4 Total loading time: 0 Render date: 2023-03-30T12:24:34.274Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Structure and Properties of the Semiconductors Tl2SnAs2Q6 (Q = S, Se)

Published online by Cambridge University Press:  01 February 2011

Ratnasabapathy G. Iyer
Affiliation:
Department of Chemistry, Astronomy Michigan State University, East Lansing, MI 48824
Daniel Bilc
Affiliation:
Department of Physics andAstronomy Michigan State University, East Lansing, MI 48824
S. D. Mahanti
Affiliation:
Department of Physics andAstronomy Michigan State University, East Lansing, MI 48824
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry, Astronomy Michigan State University, East Lansing, MI 48824
Get access

Abstract

We describe the Tl2SnAs2Q6, (Q= S, Se) compounds which consist of [SnAs2S6]2- layers with the Tl+ cations lying in between. Tl2SnAs2S6 and Tl2SnAs2Se6 crystallize in the space group P-3 with a = 6.706(4) Å, c = 7.187(6) Å and a = 6.996(3) Å, c = 7.232(4) Å respectively. These compounds are semiconductors with band gaps of 1.68 eV for the sulfide and 1.08 eV for selenide corresponding to their dark red and black colors respectively. Band structure calculations suggest indirect band gaps in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 (a) Sutorik, A. C., and Kanatzidis, M. G., Prog. Inorg. Chem, 43, 151, (1995).Google Scholar
b) Kanatzidis, M. G., Chem. Mater. 2, 353, (1990).CrossRefGoogle Scholar
(b) Kanatzidis, M. G., Curr. Opin. Solid State Mater. Sci. 2, 139, (1997).CrossRefGoogle Scholar
2 Iyer, R. G., and Kanatzidis, M. G., Inorg. Chem. 41, 3605 (2002).CrossRefGoogle Scholar
3 Iyer, R. G., Do, J., and Kanatzidis, M. G., Inorg. Chem. 42, 1475 (2003).CrossRefGoogle Scholar
4 (a) Petkov, K., Todorov, R., Kozhuharova, D., Tichy, L., Cernoskova, E., Ewen, P. J. S., J. Mater. Sci. 39, 961 (2004).CrossRefGoogle Scholar
(b) Lippens, P. E., Idrissi, R. M. A., Olivier, F. J., Jumas, J. C., J. Alloys Compd. 298, 47 (2000).CrossRefGoogle Scholar
5 (a) Takeuchi, Y., Ghose, S., Nowacki, W., Z. Kristallogr. 121, 321 (1965).CrossRefGoogle Scholar
(b) Brown, K. L., Dickson, F. W., Z. Kristallogr. 144, 367 (1976).CrossRefGoogle Scholar
(c) Engel, P., Gostojic, M., Nowacki, W., Z. Kristallogr. 165, 209 (1983).CrossRefGoogle Scholar
(d) Graeser, S., Wulf, R., Edenharter, A., Schweizerische Mineralog Petrogr. Mitteil. 72, 293 (1992).Google Scholar
(e) Gostojic, M., Edenharter, A., Nowacki, W., Engel, P., Z. Kristallogr. 158, 43 (1982).CrossRefGoogle Scholar
6 Blaha, P.; Schwartz, K.; Luitz, J. WIEN97, a full potential linearized augmented plane wave package for calculating crystal properties, Karlhienz Schwartz, Tech. Universitat Wien, Austria, 1999.Google Scholar
7 SMART 5.054, SAINT 6.36, SHELXTL 5.1: Bruker- Axs Inc., Madison, WI 1997.Google Scholar
8 Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M. J. Appl. Phys. 69 (5), 2849 (1991).CrossRefGoogle Scholar
9 (a) Idrissi, R. M. A., Durand, J. -M., Bonnet, B., Hafid, L., Olivier, F. J., Jumas, J. C., J. Alloys Compd. 239, 8 (1996).Google Scholar
(b) Koudelka, L., Pisarcik, M., Blinov, L. N., Gutenev, M. S., J. Non-Cryst. Solids 134, 86 (1991).CrossRefGoogle Scholar
10 Drabold, D. A., Fedders, P. A., Klemm, S., Sankey, O. F., Phys. Rev. Lett. 67, 2179 (1991).CrossRefGoogle Scholar
11 (a) Kolobov, A. V., Tominaga, J., J. Mater. Sci.-Mater. El. 14, 677 (2003).CrossRefGoogle Scholar
(b) Lowrey, T. A., Hudgens, S. J., Czubatyj, W., Dennison, C. H., Kostyley, S. A., Wicker, G. C., Mater. Res. Soc. Symp. Proc. 101 (2004).Google Scholar