Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-14T15:26:08.807Z Has data issue: false hasContentIssue false

Structure and Characteristics of Strained-Si-On-Insulator (Strained-SOI) MOSFETs

Published online by Cambridge University Press:  15 March 2011

Shin-ichi Takagi
Affiliation:
Advanced LSI Technology Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210-8582, Japan
Tsutomu Tezuka
Affiliation:
Advanced LSI Technology Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210-8582, Japan
Naoharu Sugiyama
Affiliation:
Advanced LSI Technology Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210-8582, Japan
Tomohisa Mizuno
Affiliation:
Advanced LSI Technology Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210-8582, Japan
Atsushi Kurobe
Affiliation:
Advanced LSI Technology Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210-8582, Japan
Get access

Abstrct:

Strained-Si MOSFET is an attractive device structure to be able to relax several fundamental limitations of CMOS scaling, because of high electron and hole mobility and compatibility with Si CMOS standard processing. In this paper, we present a new device structure including strained-Si channel, strained-SOI MOSFET, applicable to CMOS under sub-100 nm technology nodes. The main feature of this device is that thin strained-Si channel/relaxed SiGe hetero-structures are formed on buried oxides. The principle and the advantages are described in detail. The strained-SOI MOSFETs, whose electron and hole mobility is 1.6 and 1.3 times, respectively, higher than in conventional MOSFETs, have successfully been fabricated by combining the SIMOX technology with re-growth of strained Si films. We also present novel fabrication techniques to realize ultra-thin SiGe-on-Insulator (SGOI) virtual substrates with high Ge content, including Ge condensation due to oxidation of SGOI with lower Ge content. Strained-Si/SGOI structures with total thickness of 21 nm and Ge content of 56 % have been fabricated by oxidizing SiGe films on conventional SOI substrates and re-growing strained-Si films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohba, R. and Mizuno, T., IEEE Trans. Electron Devices 48, 338 (2001)Google Scholar
2. Pinto, M. R, Sangiorgi, E. and Bude, J., IEEE Electron Device Lett. 14, 375 (1993)Google Scholar
3. Lundstrom, M. S., IEEE Electron Device Lett. 22, 293 (2001)Google Scholar
4. Welser, J. J., Hoyt, J. L. and Gibbons, J. F., IEDM Tech. Dig., 1000 (1992)Google Scholar
5. Welser, J. J., Hoyt, J. L. and Gibbons, J. F., IEEE Electron Device Lett. 15, 100 (1994)Google Scholar
6. Welser, J. J., Hoyt, J. L., Takagi, S. and Gibbons, J. F., IEDM Tech. Dig., 373 (1994)Google Scholar
7. Rim, K., Hoyt, J. L. and Gibbons, J. F., IEDM Tech. Dig., 707 (1998)Google Scholar
8. Sugii, N., Nakagawa, K., Yamaguchi, S. and Miyao, M., Appl. Phys. Lett. 75, 2948 (1999)Google Scholar
9. Rim, K., Koester, S., Hargrove, M., Chu, J., Mooney, P.M., Ott, J., Kanarsky, T., Ronsheim, P., leong, M., Grill, A., Wong, H.-S.P., Proc. VLSI Symp., 59 (2001)Google Scholar
10. Rim, K., Welser, J.J., Hoyt, J.L. and Gibbons, J.F., IEDM Tech. Dig., 517 (1995)Google Scholar
11. Nayak, D. K., Goto, K., Yutani, A., Murota, J. and Shiraki, Y., IEEE Trans. Electron Devices 43, 1709 (1996)Google Scholar
12. Maiti, C.K., Bera, L.K. Dey, S.S., Nayak, D.K. and Chakrabarti, N.B., Solid State Electron. 41, 1863 (1997)Google Scholar
13. Tezuka, T., Kurobe, A., Sugiyama, N. and Takagi, S., Thin Solid Films 369, 340 (2000)Google Scholar
14. Tezuka, T., Sugiyama, N., Takagi, S. and Kurobe, A., Abs. 25th International Conference on the Physics of Semiconductors, H–270, 629 (2000)Google Scholar
15. Mizuno, T., Takagi, S., Sugiyama, N., Koga, J., Tezuka, T., Usuda, K., Hatakeyama, T., Kurobe, A. and Torium, A., IEDM Tech. Dig., 934 (1999)Google Scholar
16. Mizuno, T., Takagi, S., Sugiyama, N., Satake, H., Kurobe, A., and Toriumi, A., IEEE Electron Device Lett. 21, 230 (2000)Google Scholar
17. Mizuno, T., Sugiyama, N., Satake, H. and Takagi, S., Proc. VLSI Symposium, 210 (2000)Google Scholar
18. Takagi, S., Int. J. High Speed Electronics and Systems 10, 155 (2000)Google Scholar
19. Mizuno, T., Sugiyama, N., Kurobe, A., and Takagi, S., IEEE Trans. Electron Devices 48, 1612 (2001)Google Scholar
20. Rashed, M., Shih, W. K., Jallepalli, S., Kwan, T. J. T. and Maziar, C. M., IEDM Tech. Dig., 765 (1995)Google Scholar
21. Takagi, S., Hoyt, J.L., Welser, J.J., Gibbons, J.F., J. Appl. Phys. 80, 1567 (1996)Google Scholar
22. Oberhuber, R., Zandler, G. and Vogl, P., Phys. Rev. B 58, 9941 (1998)Google Scholar
23. Huang, L.-J., Chu, J.O., Goma, S., D'Emic, C.P., Koester, S.I., Canaperi, D.F., Mooney, P.M., Cordes, S.A., Speidell, J.L., Anderson, R.M., Wong, H.-S.P., Proc. VLSI Symp., 57 (2001)Google Scholar
24. Takagi, S., Mizuno, T., Sugiyama, N., Tezuka, T. and Kurobe, A., IEICE Trans. Electron. E84–C, 1043 (2001)Google Scholar
25. Cassan, E., J. Appl. Phys. 87, 7931 (2000)Google Scholar
26. Yoshimi, M., Terauchi, M., Nishiyama, A., Arisumi, O., Murakoshi, A., Matsuzawa, K., Sigyo, N., Takeno, S., Tomita, M., Suzuki, K., Ushiku, Y., Tango, H.; IEEE Trans. on Electron Devices 44, 423 (1997)Google Scholar
27. Hatakeyama, T., Matsuzawa, K. and Takagi, S., Jpn. J. Appl. Phys. 40, 2627 (2001)Google Scholar
28. Tezuka, T., Sugiyama, N. Mizuno, T. and Takagi, S., IEDM Tech. Dig., 946 (2001)Google Scholar
29. Fukatsu, S., Ishikawa, Y. Saito, T. and N, Shibata, Appl. Phys. Lett. 72, 3485 (1998)Google Scholar
30. Ishikawa, Y., Shibata, N. and Fukatsu, S., Appl. Phys. Lett. 75, 983 (1999)Google Scholar
31. Sugiyama, N., Mizuno, T., Takagi, S., Koike, M. and Kurobe, A., Thin Solid Films 369, 199 (2000)Google Scholar
32. Sugiyama, N., Mizuno, T., Suzuki, M. and Takagi, S., Jpn. J. Appl. Phys. 40, 2875 (2001)Google Scholar
33. Takagi, S., Toriumi, A., Iwase, M. and Tango, H., IEEE Trans. Electron Devices 41, 2357 (1994)Google Scholar
34. Mizuno, T., Sugiyama, N., Kurobe, A., and Takagi, S., IEICE Trans. Electron. E84–C, 1423 (2001)Google Scholar
35. Mizuno, T., Sugiyama, N., Tezuka, T., and Takagi, S., IEEE Trans. Electron Devices 49, no.1 (2002)Google Scholar
36. Tezuka, T., Sugiyama, N., Mizuno, T., Suzuki, M. and Takagi, S., Jpn. J. Appl. Phys. 40, 2866 (2001)Google Scholar
37. Tezuka, T., Sugiyama, N. and Takagi, S., Appl. Phys. Lett. 79, 1798 (2001)Google Scholar
38. Mizuno, T., Sugiyama, N., Tezuka, T. and Takagi, S., Ext. Abs. Solid State Devices and Materials, (2001); published in Appl. Phys. Lett.Google Scholar
39. LeGoues, F. K., Rosenberg, R. and Meyerson, B. S., Appl. Phys. Lett. 54, 644 (1989)Google Scholar