Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-16T19:50:39.099Z Has data issue: false hasContentIssue false

Structural Characterization of Aluminum Foams Obtained by Powder Metallurgy

Published online by Cambridge University Press:  01 February 2011

C. A. León-Patiño
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888 Centro, C.P. 58000, Morelia, México, caleon@umich.mx
M. A. Monje-García
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888 Centro, C.P. 58000, Morelia, México, caleon@umich.mx
E. A. Aguilar-Reyes
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888 Centro, C.P. 58000, Morelia, México, caleon@umich.mx
E. Bedolla-Becerril
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888 Centro, C.P. 58000, Morelia, México, caleon@umich.mx
Get access

Abstract

The porous structure of aluminum foams was quantitatively monitored in terms of pore density, pore area, and shape and size distribution using image analysis; then, related to density and expansion profiles by interrupted experiments. This practice offers important information in the control and reproducibility of foams. The aluminum foams were produced by the powder compact melting method at 800°C. The foamable precursors consisted in uniaxial cold pressed Al-TiH2 mixtures compacted at 387 MPa; the pressure applied and particle size distribution of the mixture originated preforms with 95.9% densification. This procedure eliminated the traditional hot-compaction step; besides, the amount of foaming agent was kept to a minimum of 0.5 wt.% TiH2. A volume expansion of 215 to 236% and densities from 0.7730 to 0.8206 g/cm3were obtained in a time window of 420 to 570 s. The calculated shape factors and Feret diameters defined how the roundness of pores varies with size all along the foaming process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Banhart, J., Progress in Mat. Sci. 46, 559 (2001).Google Scholar
2. Babcsán, N., Leitlmeier, D. and Degischer, H. P., Mat.-wiss.u. Werkstofftech. 34, 22 (2003).Google Scholar
3. Baumeister, J., Banhart, J. and Weber, M., Mat. & Design 18, 217 (1997).Google Scholar
4. Yu, Chin-Jye, Eifert, H. H., Banhart, J. and Baumeister, J., Mat. Res. Innovat. 2, 181 (1998).Google Scholar
5. Tzeng, Sheng-Chung and Ma, Wei-Ping, Int. J. Adv. Manuf. Technol. 32, 473 (2007).Google Scholar
6. Proa-Flores, P. M. and Drew, R. A. L., in Porous Metals and Metallic Foams, edited by Lefebvre, L. P., Banhart, J. and Dunand, D. (DEStech Pub. Inc., Lancaster, USA 2008), p. 55.Google Scholar
7. Ozan, S., Taskin, M., Kolukisa, S. and Ozerdem, M., Int. J. Adv. Manuf. Technol. 39, 251 (2008).Google Scholar
8. Song, Zhen-Lun, Ma, Li-Qun, Wu, Zhao-Jin and He, De-Ping, J. Mat. Sci. 35, 15 (2000).Google Scholar