Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-6rwzl Total loading time: 3.455 Render date: 2021-05-11T15:09:28.765Z Has data issue: true Feature Flags: {}

Strain Relaxation of He+ Implanted, Pseudomorphic Si1−xGex Layers on Si(100)

Published online by Cambridge University Press:  17 March 2011

B. Holländer
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
S. Mantl
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
St. Lenk
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
H. Trinkaus
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
D. Kirch
Affiliation:
DaimlerChrysler AG, Research and Technology, D-89081 Ulm, Germany
M. Luysberg
Affiliation:
DaimlerChrysler AG, Research and Technology, D-89081 Ulm, Germany
Th. Hackbarth
Affiliation:
DaimlerChrysler AG, Research and Technology, D-89081 Ulm, Germany
H.-J. Herzog
Affiliation:
DaimlerChrysler AG, Research and Technology, D-89081 Ulm, Germany
P.F.P. Fichtner
Affiliation:
Dept. de Metalurgia, Univ. Fed. do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
Get access

Abstract

Strain relaxed Si1−xGex buffer layers are of great importance as virtual substrates for Si1−xGex/Si quantum well structures and devices. We apply He+ ion implantation and subsequent annealing on pseudomorphic, MBE-grown Si1−xGex/Si(100) heterostructures with an implantation depth of about 100 nm below the Si1−xGex/Si interface. A narrow defect band is generated inducing the formation of strain relieving misfit dislocations during subsequent thermal annealing. Efficient strain relaxation was demonstrated for Si1−xGex layers with Ge fractions up to 30 at. %. The variation of the implantation dose and the annealing conditions changes the dislocation configuration and the He bubble structure. At a dose of 2×1016 cm−2 a high degree of relaxation is accompanied by a low density of threading dislocations of about 107 cm−2 for a Ge content of 30%. An additional increase of the Ge content can be achieved by annealing in oxygen. The oxidation of Si1−xGex leads to the formation of SiO2 while the Ge atoms are rejected from the oxide leading to a pile-up of Ge below the oxidation front. The heterostructures were analyzed using X-ray diffraction, Rutherford backscattering/channeling spectrometry and transmission electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Schäffler, F., Semicond. Sci. Technol. 12 (1997) 1515 CrossRefGoogle Scholar
2. Ismail, K., Arafa, M., Saenger, K.L., Chu, J. O., and Meyerson, B.S., Appl. Phys. Lett. 66,1077 (1995)CrossRefGoogle Scholar
3. Höck, G., Glück, M., Hackbarth, T., Herzog, H.-J., and Kohn, E., Thin Solid Films 336, 141 (1998)CrossRefGoogle Scholar
4. Zeuner, M., Hackbarth, T., König, U., Gruhle, A., and Aniel, F., 57th Annual Dev. Res. Conf. Digest, Univ. of California, Santa Barbara, USA, IEEE 99TH 177, 8393 (1999)Google Scholar
5. Schäffler, F., Többen, D., Herzog, H.-J., Abstreiter, G., and Holländer, B., Semicond. Sci. Technol. 7, 260 (1992)CrossRefGoogle Scholar
6. Fitzgerald, E.A., Xie, Y.H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.J., and Weir, B.E., Appl. Phys. Lett. 59, 811 (1991)CrossRefGoogle Scholar
7. Holländer, B., Mantl, S., Michelsen, W., Mesters, St., Hartmann, A., Vescan, L., Gerthsen, D., Nucl. Instr. Meth. B84, 218 (1994)CrossRefGoogle Scholar
8. Powell, A.R., Iyer, S.S., and LeGoues, F.K., Appl. Phys. Lett. 64, 1856 (1994)CrossRefGoogle Scholar
9. Linder, K.K., Zhang, F.C., Rieh, J.-S., Bhattacharya, P., and Houghton, D., Appl. Phys. Lett. 70, 3224 (1997)CrossRefGoogle Scholar
10. Bauer, M., Lyutovich, K., Oehme, M., Kasper, E., Herzog, H.-J., and Ernst, F., Thin Sol. Films 369, 152 (2000)CrossRefGoogle Scholar
11. Trinkaus, H., Holländer, B., SRongen, t., Mantl, S., Herzog, H.-J., Kuchenbecker, J., Hackbarth, T., Appl. Phys. Lett. 76, 3552 (2000)CrossRefGoogle Scholar
12. Holländer, B., Lenk, St., Mantl, S., Trinkaus, H., Kirch, D., Luysberg, M., Hackbarth, T., Herzog, H.-J., Fichtner, P.F.P., Nucl. Instr. Meth. B175–177, 357 (2001)CrossRefGoogle Scholar
13. Picraux, S.T., Chu, W.K., Allen, W.R., Ellison, J.A., Nucl. Instr. Meth. B15, 306 (1986)CrossRefGoogle Scholar
14. Holländer, B., Mantl, S., Stritzker, B., Schäffler, F., Herzog, H.-J., Kasper, E., Appl. Surf. Sci. 50, 450 (1991)CrossRefGoogle Scholar
15. Hackbarth, T., Herzog, H.-J., Zeuner, M., Höck, G., Fitzgerald, E. A., Bulsara, M., Rosenblad, C., Känel, H. von, Thin Solid Films 369, 148 (2000)CrossRefGoogle Scholar
16. Tezuka, T., Sugiyama, N., Mizuno, T., Suzuki, M., and Takagi, S., Jpn. J. Appl. Phys. 40, 2866 (2001)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Strain Relaxation of He+ Implanted, Pseudomorphic Si1−xGex Layers on Si(100)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Strain Relaxation of He+ Implanted, Pseudomorphic Si1−xGex Layers on Si(100)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Strain Relaxation of He+ Implanted, Pseudomorphic Si1−xGex Layers on Si(100)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *