Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T01:42:31.773Z Has data issue: false hasContentIssue false

STM Study of Reconstruction on Si(III)

Published online by Cambridge University Press:  10 February 2011

M. Umekawa
Affiliation:
Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan
S. Ohara
Affiliation:
Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan
S. Tatsukawa
Affiliation:
Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan
H. Kuriyama
Affiliation:
Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan
S. Matsumoto
Affiliation:
Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan
Get access

Abstract

The formation of the boron-induced reconstruction on Si(111) 7×7 surface has been studied with scanning tunneling microscope. By evaporating elemental B on Si elevated at high temperatures, reconstructed structures develop from the step edge to the adjacent lower terrace. They emerge at temperatures between 800°C and 900°C. It indicates that phase transition from 7×7 to 1×1 surface structure is necessary for forming the √3-B reconstructed structures. The phase boundary between 7×7 and regions is a straight line with termination of the faulted halves of 7×7 unit cell. It is also found that strip or triangle regions are formed, depending on the direction of the step propagation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hirayama, H., Tatsumi, T. and Aizaki, N., Surf. Sci., 193, L47 (1988).Google Scholar
2. Korobtsov, V. V., Lifshits, V. G. and Zotov, A. V., Surf. Sci., 195, 466 (1988).Google Scholar
3. Thibaudau, F., Dumas, Ph., Mathiez, Ph., Humbert, A., Satti, D. and Salvan, F., Surf. Sci. 211, 148 (1989).Google Scholar
4. Bedrossian, P., Meade, R. D., Mortensen, K., Chen, D. M., Golovchenka, J. A. and Vanderbilt, D., Phys. Rev. Lett., 63, 1257 (1989).Google Scholar
5. Lyo, I. -W., Kaxiras, E. and Avouris, Ph., Phys. Rev. Lett., 63, 1261 (1989).Google Scholar
6. Shen, T. -C., Wang, C., Lyding, J. W. and Tucker, J. R., Phys. Rev., B 50, 7453 (1994).Google Scholar
7. Wong, T. M. H., Mckinnon, A. W. and Weiland, H. E., Surf. Sci., 328, 227 (1995).Google Scholar
8. Headrick, R. L., Robinson, I. K., Vlieg, E. and Feldman, L. C., Phys. Rev. Lett., 63, 1253 (1989).Google Scholar
9. Kaxiras, , Pandey, K. C., Himsel, F. J. and Tromp, R. M., Phys. Rev., B41, 1253 (1989).Google Scholar
10. Huang, H., Tong, S. Y., Quinn, J. and Jona, F., Phys. Rev., 41, 3276 (1990).Google Scholar
11. Akimoto, K., Mizuki, J., Hirosawa, I., Tatsumi, T., Hirosawa, H., Aizaki, N. and Matsu, J. Extended Abstracts of the 19th conference on Solid State Devices and Materials. (Tokyo, 1987), p. 463.Google Scholar
12. Headrick, R. L., Weir, B. E., Levi, A. F. J., Freer, B., Berk, J. and Feldman, L. C, J. Vac. Sci. Technol., A9, 2269 (1991).Google Scholar
13. Headrick, R. L., Feldman, L. C. and Robinson, I. K., Appl. phys. Lett., 55, 442 (1989)Google Scholar
14. Hirayama, H., Hiroi, M., Koyama, K. and Tatsumi, T., J. Crystal Growth, 111, 856 (1991 Google Scholar
15. Kumagai, Y., Ishimoto, K., Mori, R. and Hasegawa, F., Jpn. J. Appl. Phys., 33, L1 (1994 Google Scholar
16. Becker, R. S., Golovchenko, J. A., Hamann, D. R., and Swartzentruber, B. S., Phys. Rev. Lett., 55, 2032 (1985).Google Scholar
17. Zotov, A. V., Kulakov, M. A., Ryzhkov, S. V., Saranin, A. A., Lifshits, V. G., Bullem, B. and Eisele, I., Surf. Sci., 345, 313 (1996).Google Scholar
18. Hoshino, T., Kumamoto, K., Kokubun, K., Ishimaru, T. and Ohdomari, I., Phys. Rev., B 51, 14594 (1995).Google Scholar
19. Fujita, K., Kusumi, Y. and Ichikawa, M., Appl. phys. Lett., 68, 631 (1996).Google Scholar