Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-15T03:28:56.995Z Has data issue: false hasContentIssue false

STM Studies of Electrode/Electrolyte Interfaces and Silicon Surface Reactions in Controlled Atmospheres

Published online by Cambridge University Press:  10 February 2011

Christopher P. Wade
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305–5080
Huihong Luo
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305–5080
William L. Dunbar
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305–5080
Matthew R. Linford
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305–5080
Christopher E.D. Chidsey
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305–5080
Get access

Abstract

We have assembled a scanning tunneling microscope with an inverted sample that allows the sample surface to be contacted by fluid electrolytes in a controlled atmosphere. A hanging meniscus is formed between the sample and a small cup surrounding the tunneling tip. In-situ imaging of the electrode/electrolyte interface is conveniently achieved with clean samples under potentiostatic control. The functioning of the microscope is illustrated by the imaging of the electrodeposition of copper on gold. This microscope has been used to image hydrogen-terminated silicon surfaces and to demonstrate that islands, tentatively assigned as silicon oxide, are formed on rinsing in water but can be avoided if the surface is not rinsed on withdrawal from the ammonium fluoride etching solution. Finally, STM shows that the convenient, gas-phase photochlorination of H-Si(111) produces the simple Cl-Si(111)(1×1) structure with little or no etching of the silicon surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Magnussen, O.M., Hotlos, J., Nichols, R.J., Kolb, D.M. and Behm, R.J., Phys. Rev. Lett. 64, p. 2929 (1990).Google Scholar
2. Chidsey, C. E. D. and Linford, M. R. in Cleaning Technology in Semiconductor Device Manufacturing IV, edited by Novak, R.E. and Ruzyllo, J. (Electrochemical Soc. Proc. 95–20, Pennington, NJ 1996), p. 455463.Google Scholar
3. Linford, M. R., Fenter, P., Eisenberger, P. M. and Chidsey, C. E. D., J. Am. Chem. Soc. 117, p. 3145(1995).Google Scholar
4. Higashi, G.S., Chabal, Y.J., Trucks, G.W. and Raghavachari, K., Appl. Phys. Lett. 56, p. 2104 (1990).Google Scholar
5. Linford, M.R., Ph.D. Dissertation, Stanford University, 1996.Google Scholar
6. Will, T., Dietterle, M. and Kolb, D.M. in Nanoscale Probes of the Solid-Liquid Interface, (NATO ASI Series E 288 1995) p. 137162.Google Scholar
7. Hachiya, T., Honbo, H. and Itaya, K., J. Electroanal. Chem. 315, p. 275 (1991).Google Scholar
8. Toney, M.F., Howard, J.N., Richer, J., Borges, G.L., Gordon, J.G., Melroy, O.R., Yee, D. and Sorensen, L.B., Phys. Rev. Lett. 75, p. 4472 (1995).Google Scholar
9. Neuwald, U., Hessel, H.E., Feltz, A., Memmert, U. and Behm, R.J., Appl. Phys. Lett. 60, p. 1307 (1992).Google Scholar
10. Allongue, P., Fueling, V. and Gerischer, H., Electrochimica Acta 40, p. 1353 (1995).Google Scholar
11. Bansal, .A., Li, X., Lauermann, I., Lewis, N.S., Yi, S.I. and Weinberg, W.H., J. Am. Chem. Soc. 118, 7225 (1996).Google Scholar
12. Terry, J., Linford, M.R., Wigren, C., Cao, R., Pianetta, P. and Chidsey, C.E.D., submitted to Appl. Phys. Lett.Google Scholar
13. Lawing, A.S., Muscat, A.J., Sawin, H.H., Butterbaugh, J. W., in Cleaning Technology in Semiconductor Device Manufacturing IV, edited by Novak, R.E. and Ruzyllo, J. (Electrochemical Soc. Proc. 95–20, Pennington, NJ 1996), p. 150.Google Scholar
14. Terry, J., Linford, M. R., Chidsey, C.E.D., Cao, R., Pianetta, P., unpublished results.Google Scholar
15. Boland, J.J. and Villarrubia, J.S., Phys. Rev. B. 41, p. 9865 (1990).Google Scholar
16. Feltz, A., Memmert, U. and Behm, R.J., Surf. Sci. 307–309, p. 216 (1994).Google Scholar
17. Magnussen, O. M., Ph.D. Dissertation, Universität Ulm, 1993; also private communication.Google Scholar
18. Ikegami, H., Ohmori, K., Ikeyda, H., Iwano, H., Zaima, S. and Yasuda, Y., Jpn. J. Appl. Phys. Part 135, p. 1593 (1996).Google Scholar
19. Ogawa, H., Ishikawa, K., Inomata, C. and Fujimura, S., J. Appl Phys 79, p.472 (1996).Google Scholar
20. Graf, D., Grunder, M. and Schultz, R., J. Vac. Sci. Technol. A 7, p. 808 (1988).Google Scholar
21. Yasaka, T., Kanda, K., Sawara, K., Miyazaki, S. and Hirose, M., Jap. J. Appl. Phys. Part I 30, p. 3567(1991).Google Scholar
22. Yano, F., Hiraoka, A., Itoga, T., Kokima, H. and Kanehori, K., J. Vac. Sci. Technol. A 13, p. 2671 (1995).Google Scholar
23. Watanabe, S. and Sugita, Y., Surf. Sci. 327, p, l (1995).Google Scholar
24. Usuda, K., Kanaya, H., Yamada, K., Sato, T., Sueyoshi, T. and Iwatsuki, M., Appl. Phys. Lett. 64, p. 3240(1994).Google Scholar
25. Morita, M., Ohmi, T., Hasegawa, E., Kawakimi, M. and Suma, K., Appl. Phys. Lett. 55, p. 562 (1989).Google Scholar
26. CRC Handbook of Chemistry and Physics, 73rd. ed., edited by Lide, D. R. (CRC Press, Inc., Boca Raton, Florida, 1992) p. 12–8.Google Scholar
27. Kelly, A. and Groves, G. W., Crystallography and Crystal Defects (Addison-Wesley Publishing Company, Inc., Herndon, VA, 1970), p. 411.Google Scholar
28. Moringa, H. and Ohmi, T. in Cleaning Technology in Semiconductor Device Manufacturing IV, edited by Novak, R.E. and Ruzyllo, J. (Electrochemical Soc. Proc. 95–20, Pennington, NJ 1996), p. 257268.Google Scholar
29. Chyan, O.M.R., Chen, J.-J., Chien, H. Y., Sees, J. and Hall, L., J. Electrochem. Soc. 143, p. 92 (1996).Google Scholar
30. The oxygen coverage γ02 determined from the XPS spectra was calculated by assuming that the coverage of chlorine on the Cl-Si(111) surface is 1 monolayer (Figure 5). That surface shows a Cl2s/Si2P peak area ratio of 0.25. We calculate the oxygen coverage on the rinsed and unrinsed H-Si(111) surfaces using the following equation:Google Scholar