Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-lkk24 Total loading time: 0.16 Render date: 2021-09-22T12:09:37.540Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Stabilization of Thick Fcc Cobalt Layers by One Monolayer of Manganese in Co/Mn Superlattices

Published online by Cambridge University Press:  10 February 2011

V. Pierron-Bohnes
Affiliation:
IPCMS-GEMME, 23 rue du Loess, 67037 Strasbourg, France
A. Michel
Affiliation:
IPCMS-GEMME, 23 rue du Loess, 67037 Strasbourg, France
J.P. Jay
Affiliation:
IPCMS-GEMME, 23 rue du Loess, 67037 Strasbourg, France
P. Panissod
Affiliation:
IPCMS-GEMME, 23 rue du Loess, 67037 Strasbourg, France
Get access

Abstract

Epitaxial Co/Mn superlattices (0.6 to 4.8 nm thick Co) have been grown on (0002) hcp Ru buffer layer on mica substrates. The face centered cubic (fcc) phase of cobalt is stabilized by the very thin manganese layer. The structural properties of these layers have been studied through x ray diffraction and nuclear magnetic resonance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Papon, A.M., Simon, J.P., Guyot, P., and Desjonqueres, M.C., Phil. Mag., 39, 301 (1979); Ericson, Acta Metall. 14, 853 (1966).CrossRefGoogle Scholar
[2] Paterson, M.S., J. Applied Phys. 8 805 (1952); A. Guinier, in Théorie et technique de la radiocristallographie, Dunod, Paris (1964); M.T. Sebastian and P. Krishna, Phys. Stat. Sol. 101, 329 (1987).CrossRefGoogle Scholar
[3] Henry, Y., Pierron-Bohnes, V., Vennegues, P., Ounadjela, K., J. Appl. Phys. 76, 2817 (1994).CrossRefGoogle Scholar
[4] Ounadjela, K., Vennegues, P., Henry, Y., Michel, A., Pierron-Bohnes, V., and Arabski, J., Phys. Rev. B 49, 8561 (1994)CrossRefGoogle Scholar
[5] Michel, A., PhD thesis, Strasbourg, France, 1995.Google Scholar
[6] Muller, D., Ounadjela, K., Vennegues, P., Pierron-Bohnes, V., Arbaoui, A., Jay, J.P., Dinia, A., and Panissod, P., J.M.M.M. 104 1873 (1992).CrossRefGoogle Scholar
[7] Mény, C., Panissod, P. and Loloee, R., Phys. Rev. B45 12269 (1992)CrossRefGoogle Scholar
[8] Panissod, P., Jay, J.Ph., Mény, C., Wójcik, M. and Jedryka, E., Mat. Res. Soc. Proc. 384 61 (1995) and Hyperfine Int. 97-98 75 (1996)CrossRefGoogle Scholar
[9] Toth, L.E., Ravitz, S.F., J. Phys. Chem. Solids 24 1203 (1963)CrossRefGoogle Scholar
[10] Gronckel, H.A.M. de, Bloemen, P.J.H., Alphen, E.A.M. van, Jonge, W.J.M. de, Phys. Rev. B49 11327 (1994)CrossRefGoogle Scholar
[11] Mény, C., Jedryka, E., Panissod, P., J. Phys. Cond. Matter 5 1547 (1993)CrossRefGoogle Scholar
[12] Michel, A., Pierron-Bohnes, V., Lefebvre, S., Bessière, M., Fischer, H., J.M.M.M. 156 23 (1996).CrossRefGoogle Scholar
[13] Fischer, H., private communication (1997).Google Scholar
[14] Tsioplakis, K., Goedecke, T., Z. Metallk. 62 681 (1971).Google Scholar
[15] Redfield, A.C. and Zangwill, A.M., Phys. Rev. B, rapid comm. 34, 1378 (1986)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stabilization of Thick Fcc Cobalt Layers by One Monolayer of Manganese in Co/Mn Superlattices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Stabilization of Thick Fcc Cobalt Layers by One Monolayer of Manganese in Co/Mn Superlattices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Stabilization of Thick Fcc Cobalt Layers by One Monolayer of Manganese in Co/Mn Superlattices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *