Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-9m8n8 Total loading time: 0.677 Render date: 2022-10-04T02:53:18.300Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Stability and Structural Transition of Gold Nanowires under Their Own Surface Stresses

Published online by Cambridge University Press:  01 February 2011

Ken Gall
Affiliation:
Department of Mechanical Engineering, University of Colorado at Boulder Boulder, CO 80309.
Michael Haftel
Affiliation:
Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20375
Jiankuai Diao*
Affiliation:
Department of Mechanical Engineering, University of Colorado at Boulder Boulder, CO 80309.
Martin L. Dunn
Affiliation:
Department of Mechanical Engineering, University of Colorado at Boulder Boulder, CO 80309.
Noam Bernstein
Affiliation:
Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20375
Michael J. Mehl
Affiliation:
Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20375
*
* E-mail address: diao@colorado.edu.
Get access

Abstract

First-principle, tight binding, and semi-empirical embedded atom calculations are used to investigate a tetragonal phase transformation in gold nanowires. As wire diameter is decreased, tight binding and modified embedded atom simulations predict a surface-stress-induced phase transformation from a face-centered-cubic (fcc) <100> nanowire into a body-centered-tetragonal (bct) nanowire. In bulk gold, all theoretical approaches predict a local energy minimum at the bct phase, but tight binding and first principle calculations predict elastic instability of the bulk bct phase. The predicted existence of the stable bct phase in the nanowires is thus attributed to constraint from surface stresses. The results demonstrate that surface stresses are theoretically capable of inducing phase transformation and subsequent phase stability in nanometer scale metallic wires under appropriate conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Johnson, C. J., Dujardin, E., Davis, S. A., Murphy, C. J., and Mann, S.. J. Mater. Chem. 12, pp. 17651770 (2002).CrossRefGoogle Scholar
(2) Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H., Adv. Mater. 15, pp. 353389 (2003).CrossRefGoogle Scholar
(3) Agrait, N., Rubio, G., and Vieira, S., Phys. Rev. Lett. 74, 39953998 (1995).CrossRefGoogle Scholar
(4) Brandbyge, M., Schiotz, J., Sorensen, M. R., Stoltze, P., Jacobsen, K. W., Norskov, J. K., Olesen, L., Laegsgaard, E., Stensgaard, I., and Besebbacher, F,, Phys. Rev. B 52, 84998514 (1995).CrossRefGoogle Scholar
(5) Stalder, A. and Durig, U., J. Vac. Sci. Tech. 14, 12591263 (1996).CrossRefGoogle Scholar
(6) Kondo, Y. and Takayanagi, K., Phys. Rev. Lett. 79, 34553458 (1997).CrossRefGoogle Scholar
(7) Ohnishi, H., Kondo, Y., and Takayanagi, K., Nature 395, 780783 (1998).CrossRefGoogle Scholar
(8) Yanson, A. I., Bollinger, G. R., van der Brom, H. E., Agrait, N., and Ruitenbeek, J. M., Nature 395, 783785 (1998).CrossRefGoogle Scholar
(9) Marszalek, P. E., Greenleaf, W. J., Li, H., Oberhauser, A. F., and Fernandez, J. M., Proc. Nat. Acad. Sci, 97, 62826286 (2000).CrossRefGoogle Scholar
(10) Kondo, Y. and Takayanagi, K., Science 289, 606608 (2000).CrossRefGoogle Scholar
(11) Rodrigues, V., Fuhrer, T., and Ugarte, D., Phys. Rev. Let. 85, 41244127 (2000).CrossRefGoogle Scholar
(12) Rodrigues, V. and Ugarte, D., Phys. Rev. B 63, 073405–1–4 (2001).CrossRefGoogle Scholar
(13) Wang, B., Yin, S., Wang, G., Buldum, A., and Zhao, J. (2001), Phys. Rev. Let. 86, 20462049.CrossRefGoogle Scholar
(14) Zhong, Z. Y., Male, K. B., KB, , and Luong, J. H. T, Anal. Lett. 36 (15) 30973118 (2003).CrossRefGoogle Scholar
(15) Wagner, P., Hegner, M., Kernen, P., Zaugg, F., and Semenza, G., Biophys. Jour. 70 (5) 20522066 (1996).CrossRefGoogle Scholar
(16) Rabkeclemmer, C. E., Leavitt, A. J., and Beebe, T. P., Lang. 10 (6) 17961800 (1994).CrossRefGoogle Scholar
(17) Savran, C. A., Knudsen, S. M., Ellington, A. D., and Manalis, S. R.. Anal. Chem. 76 (11) 31943198 (2004).CrossRefGoogle Scholar
(18) Diao, J., Gall, K., Dunn, M. (2003), Nature Materials, 2, pp. 656660.CrossRefGoogle Scholar
(19) Jacobs, K., Zaziski, D., Scher, E. C., Herhold, A. B., and Alivisatos, A. P., Science, vol. 293, pp. 18031806 (2001).CrossRefGoogle Scholar
(20) Zaziski, D., Prilliman, S., Scher, E. C., Casula, M., Wickham, J., Clark, S. M., and Alivisatos, A. P., Nanoletters, vol. 4, pp. 943946(2004).CrossRefGoogle Scholar
(21) Olson, G. B. and Hartman, H. (1982), J. De. Phys., vol. 43, pp. 855865.Google Scholar
(22) Kanamaru, S., Leiman, P. G., Kostyuchenko, V. A., Chipman, P. R., Mesyanzhinov, V. V., Arisaka, F., and Rossmann, M. G., Nature, vol. 415, pp. 553557 (2002).CrossRefGoogle Scholar
(23) Jona, F. and Marcus, P. M., Phys. Rev. B, vol. 65, pp. 155403: 1–4 (2002).CrossRefGoogle Scholar
(24) Ji, X. Z., Tian, Y., and Jona, F., Phys. Rev. B, vol. 65, pp. 155404: 1–4 (2002).CrossRefGoogle Scholar
(25) Wills, J. M., Eriksson, O., Soderlind, P., and Boring, A. M., Phys. Rev. Lett., vol. 68, pp. 28022805 (1992).CrossRefGoogle Scholar
(26) Mehl, M. J. and Boyer, L. L., Phys. Rev. B, 43, pp. 94989502 (1991).CrossRefGoogle Scholar
(27) Mehl, M. J., Aguayo, A., Boyce, L. L., and de Coss, R., Phys. Rev. B 70, 014105 (2004).CrossRefGoogle Scholar
(28) Daw, M. S., and Baskes, M. I., Phys. Rev. B 29 (12), 6443 (1984).CrossRefGoogle Scholar
(29) Baskes, M.I, Phys. Rev. B 46, 27272742 (1992).CrossRefGoogle Scholar
(30) Mehl, M. J. and Papaconstantopoulos, D. A., Phys. Rev. B 54(7): 45194530 (1996).CrossRefGoogle Scholar
(31) Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
(32) Diao, J., Gall, K. and Dunn, M. L.. J. Mech. Phys. Solids 52 (9), 19351962 (2004).CrossRefGoogle Scholar
(33) Streitz, F. H., Cammarata, R. C., and Sieradzki, K., Phys. Rev. B 49 (15), 1069910706 (1994).CrossRefGoogle Scholar
(34) Fiorentini, V., Methfessel, M., and Scheffler, M., Phys. Rev. Lett. 71 (7): 10511054 (1993).CrossRefGoogle Scholar
(35) Yu, B. D. BD, and Scheffler, M., Phys. Rev. B, 56 (24): R15569-R15572 (1997).CrossRefGoogle Scholar
(36) Needs, R. J., Godfrey, M. J., and Mansfield, M., Surf. Sci. 242 (1–3): 215221 (1991).CrossRefGoogle Scholar
(37) Kollar, J., Vitos, L., Osorio-Guillen, J. M., and Ahuja, R., Phys. Rev. B, 68 (24): 245417 (2003).CrossRefGoogle Scholar
(38) Diao, J., Gall, K. and Dunn, M. L., Phys. Rev. B 70, 075413 (2004).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stability and Structural Transition of Gold Nanowires under Their Own Surface Stresses
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Stability and Structural Transition of Gold Nanowires under Their Own Surface Stresses
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Stability and Structural Transition of Gold Nanowires under Their Own Surface Stresses
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *