Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-12T02:09:29.239Z Has data issue: false hasContentIssue false

Spectroscopy, Modelling and Laser Operation of Holmium Doped Laser Crystals

Published online by Cambridge University Press:  15 February 2011

Y. Kalisky
Affiliation:
Laser Department, Nuclear Research Centre-Negev, P.O. Box 9001 Beer-Sheva, 84190 Israel
S. R. Rotman
Affiliation:
Ben Gurion University of the Negev, Department of Electrical and Computer Engineering, Beer-Sheva, 84105 Israel
G. Boulon
Affiliation:
Laboratoire de Physico-Chimie des Materiaux Luminescents, Universite Lyon I, 43 Bd. du 11-Novembre-1918, 69622 Villeurbanne Cedex, France
C. Pedrini
Affiliation:
Laboratoire de Physico-Chimie des Materiaux Luminescents, Universite Lyon I, 43 Bd. du 11-Novembre-1918, 69622 Villeurbanne Cedex, France
A. Brenier
Affiliation:
Laboratoire de Physico-Chimie des Materiaux Luminescents, Universite Lyon I, 43 Bd. du 11-Novembre-1918, 69622 Villeurbanne Cedex, France
Get access

Abstract

Spectroscopic studies using laser induced fluorescence and numerical modelling of energy transfer and back transfer mechanism are reported in Er:Tm:Ho:YLF, Cr:Tm:Ho:YAG and Cr:Tm:YAG laser crystals at various temperatures (10 K-300 K). Direct energy transfer from Tm3+ excited states to Ho3+5I7 emitting level was observed and analyzed both in YAG and YLF. Further analysis of Cr3+ and Tm3+ time-dependent emission curves indicate a strong correlation of chromium-thulium pairs. Pulsed operation of holmium laser at high temperature will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Henderson, S. W., Hale, C.P., Magee, J.R., Kavaya, M.J. and Huffaker, A.V., “Eye safe coherent laser radar system at 2.1 gtm using Tm, Ho:YAG lasers”, Opt. Lett. 16 (1991) 773775.Google Scholar
2. Moody, S.E., “Evaluation of laser technologies for an aircraft wind shear detection”, in Laser Radar II, Becherer, R.J. and Harney, R.C., eds., Proc. Soc. Photo-Opt. Instrum. Eng. 783 (1987) 124131.Google Scholar
3. Barnes, N.P., “Solid state lasers for monitoring the health of planet earth”, in: Laser M2P (Materiaux Medecine et Biologie Physico-Chimie, Lyon, December 8–10, 1993) Paper #VCP1.Google Scholar
4. Kim, K.H., Choi, Y.S., Barnes, N.P., Hess, R.V., Bair, C.H. and Brockman, P., “Investigations of 2.1 μm lasing properties of Ho:Tm:Cr:YAG crystals under flash-lamp pumping at various operating conditions”, Appl. Opt. 32(12) (1993) 20662074.Google Scholar
5. Kalisky, Y., Kagan, J., Sagie, D., Brenier, A., Pedrini, C. and Boulon, G., “Spectroscopic properties, energy transfer, and laser operation of pulsed holmium lasers”, J. Appl. Phys., 70(8) (1991) 40954100.Google Scholar
6. Rotman, S.R., Eyal, A., Kalisky, Y., Brenier, A., Pedrini, C. and Boulon, G., “Modelling unusually fast non-radiative energy transfer in crystals”, in: Second French-Israeli Meeting on Solid-State Lasers, Lyon, December 6–7, 1993.Google Scholar
7. Rotman, S.R., Kalisky, Y., Brenier, A., Pedrini, C., Boulon, G. and Hartman, F.X., “Tm3+ decay in chromium-thulium-holmium-doped yttrium aluminum garnet at liquid helium temperatures”, J. Appl. Phys. 72(1) (1992) 224228.Google Scholar
8. Nie, W., Kalisky, Y., Pedrini, C., Monteil, A. and Boulon, G., “Energy transfer from Cr3+ multisites to Tm3+ multisites in yttrium aluminum garnet”, Opt. and Quant. Electron. 22 (1990) S123–S131.Google Scholar