Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-w45k2 Total loading time: 0.3 Render date: 2023-01-28T15:03:07.381Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Spectral Control of Thermal Radiation by Metallic Surface Relief Gratings

Published online by Cambridge University Press:  31 January 2011

Hitoshi Sai
Affiliation:
hitoshi-sai@aist.go.jp, AIST, Central 2, 1-1-1, Umezono, Tsukuba, 3058568, Japan
Yoshiaki Kanamori
Affiliation:
kanamori@hane.mech.tohoku.ac.jp, Tohoku University, Sendai, Miyagi, Japan
Kengo Watanabe
Affiliation:
k_watanabe@energy.mech.tohoku.ac.jp, Tohoku University, Sendai, Miyagi, Japan
Hiroo Yugami
Affiliation:
h_yugami@energy.mech.tohoku.ac.jp, Tohoku University, Sendai, Miyagi, Japan
Get access

Abstract

The microcavity effect of two-dimensional W surface-relief gratings has been investigated by means of the finite-difference time-domain simulation. The peak structure of the spectral emissivity of W gratings with a number of microcavities is in good agreement with the spectral features of a single microcavity. This result shows that the emissivity enhancement by W gratings with microcavities is mainly attributable to the microcavity effect that arises from each microcavity. It is that the spectral emissivity can be controlled by a combination of several microcavities with different parameters, and that not only a rectangular but a cylindrical microcavity also shows the microcavity effect according to its cavity modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hesketh, P.J. Zemel, J.N. and Gebhart, B.: Nature 324 (1986) 549.CrossRefGoogle Scholar
2 Zemel, J.N.: Comment. Mod. Phys. B 14 (1988) 1.Google Scholar
3 Hesketh, P.J. Zemel, J.N. and Gebhart, B.: Phys. Rev. B 37 (1988) 10795.CrossRefGoogle Scholar
4 Hesketh, P.J. Zemel, J.N. and Gebhart, B.: Phys. Rev. B 37 (1988) 10801.Google Scholar
5 Kreiter, M. Oster, J. Sambles, R. Herminghaus, S. Mitter-Neher, S. and Knoll, W.: Opt. Commun. 168 (1999) 117.CrossRefGoogle Scholar
6 Heinzel, A. Boerner, V. Gombert, A. Blasi, B. Wittwer, V. and Luther, J.: J. Mod. Opt. 47 (2001) 2399.CrossRefGoogle Scholar
7 Sai, H. Yugami, H. Akiyama, Y. Kanamori, Y. and Hane, K.: J. Opt. Soc. Am. A 18 1(2001) 471.CrossRefGoogle Scholar
8 Kusunoki, F. Takahara, J. and Kobayasi, T.: Electron. Lett. 39 (2003) 23.CrossRefGoogle Scholar
9 Marquier, F. Joulain, K. Mullet, J.P. Carminati, R. and Greffet, J.-J.: Opt. Commun. 237 (2004) 379.CrossRefGoogle Scholar
10 Maruyama, S. Kashiwa, T. Yugami, H. and Esashi, E.: Appl. Phys. Lett. 79 (2001) 1393.CrossRefGoogle Scholar
11 Sai, H. Kanamori, Y. and Yugami, H.: Appl. Phys. Lett. 82 (2003) 1685.CrossRefGoogle Scholar
12 Sai, H. and Yugami, H.: Appl. Phys. Lett. 85 (2004) 3399.CrossRefGoogle Scholar
13 Kusunoki, F. Kohama, T. Hiroshima, T. Fukumoto, S. Takahara, J. and Kobayashi, T.: Jpn. J. Appl. Phys. 43 (2004) 5253.CrossRefGoogle Scholar
14 Greffet, J.-J. Carminati, R. Joulian, K. Mulet, J.-P. Mainguy, S. and Chen, Y.: Nature 416 (2002) 61.CrossRefGoogle Scholar
15 Marquier, F. Joulain, K. Mulet, J.-P. Carminati, R. and Greffet, J.-J.: Phys. Rev. B 69 (2004) 155412.CrossRefGoogle Scholar
16 Sai, H. Kanamori, Y. Hane, K. and Yugami, H.: J. Opt. Soc. Am A 22 (2005) 1805.CrossRefGoogle Scholar
17 Miyazaki, H. T. Ikeda, K. Kasaya, T. Yamamoto, K. Inoue, Y. Fujimura, K. Kanakugi, T. Okada, M., Hatade, K. and Kitagawa, S. Appl. Phys. Lett. 92 (2008) 141114.CrossRefGoogle Scholar
18 Ikeda, K. H. Miyazaki, T. Kasaya, T. Yamamoto, K. Inoue, Y. Fujimura, K. Kanakugi, T. Okada, M., Hatade, K. and Kitagawa, S. Appl. Phys. Lett. 92 (2008) 021117.CrossRefGoogle Scholar
19 Lin, S. Y. Moreno, J. Fleming, J. G. Appl. Phys. Lett. 83 (2003) 380.CrossRefGoogle Scholar
20 Celanovic, I. Perreault, D., Kassakian, J. Phys. Rev. B 72 (2005). 075127.CrossRefGoogle Scholar
21 Waymouth, J. F. U.S., patent No.5079473 (1992).Google Scholar
22 Licciulli, A. Diso, D. Torsello, G. Tundo, S. Maffezzoli, A. Lomascolo, M. and Mazzer, M.: Semicon. Sci. Technol. 18 (2003) S174.CrossRefGoogle Scholar
23 Taflove, A. and Hagness, S.C.: Computational electrodynamics – the finite- difference time-domain method (Artech House, Boston and London, 2000) 2nd ed.Google Scholar
24 Dionne, J. A. Sweatlock, L. A. and Atwater, H. A. Phys. Rev. B 73 (2006) 035407.CrossRefGoogle Scholar
25 Kurokawa, Y. Miyazaki, H.T. Phys. Rev. B 75 (2007) 035411.CrossRefGoogle Scholar
26 Lynch, D.W. and Hunter, W.R. Handbook of Optical Constants of Solids, ed. Palik, E.D. (Academic Press, San Diego, 1998) p. 357.Google Scholar
27 Greffet, J.-J. and Nieto-Vesperinas, M.: J. Opt. Soc. Am. A 15 (1998) 2735.CrossRefGoogle Scholar
28 Dearholt, D.W. and McSpadden, W.R. Electromagnetic Wave Propagation (McGraw-Hill, New York, 1973) chapter 7.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spectral Control of Thermal Radiation by Metallic Surface Relief Gratings
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Spectral Control of Thermal Radiation by Metallic Surface Relief Gratings
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Spectral Control of Thermal Radiation by Metallic Surface Relief Gratings
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *