Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T06:35:13.521Z Has data issue: false hasContentIssue false

Solution processable nanocomposites based on silsesquioxane cores for use in organic light emitting diodes (OLEDs)

Published online by Cambridge University Press:  01 February 2011

Alan Sellinger
Affiliation:
Canon R&D Center Americas, 3300 N. First Street, San Jose, CA 95134, USA
Ryo Tamaki
Affiliation:
Macromolecular Science and Engineering, and Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Richard M. Laine
Affiliation:
Macromolecular Science and Engineering, and Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Kazunori Ueno
Affiliation:
Canon Inc., 30–2, Shimomaruko 3-Chome, Ohta-ku, Tokyo 146–8501, Japan
Hiroshi Tanabe
Affiliation:
Canon Inc., 30–2, Shimomaruko 3-Chome, Ohta-ku, Tokyo 146–8501, Japan
Evan Williams
Affiliation:
Chemical and Materials Engineering, Arizona State University Tempe, Arizona 85287, USA
Ghassan E. Jabbour
Affiliation:
Chemical and Materials Engineering, Arizona State University Tempe, Arizona 85287, USA
Get access

Abstract

A new family of materials that synergistically combine the attributes of both organic and inorganic properties for use in organic light emitting diodes (OLEDs) is presented. The hybrid materials are based on 3-D inorganic cores of octavinylsilsesquioxanes (OVS). The resultant materials have high Tg's (120–210°C), are formed from minimal step/high yield reactions and readily available starting reagents, are monodisperse (PDI<1.1), can be highly purified via common chroma-tographic techniques, and form defect-free amorphous films via spin-dip coating. For example TPD is known for its good hole injection/transport properties in OLED applications but suffers from a low Tg (65°C). TPD-OVS hybrid material has a Tg of 142°C while maintaining similar injection/transport properties to TPD. Photoluminescence analysis of the hybrid thin film reveals: 1) a 30 nm blue shift versus their dilute solution counterparts; and 2) 5 hour annealing cycles to within 10°C of their Tg show no indication of eximer formation (no red shift) that often causes reduced efficiencies in polymer LEDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Hung, L. S.; Chen, C. H. Mat. Sci. Eng. R. 2002, 39, 143222.Google Scholar
(2) Rees, I. D.; Robinson, K. L.; Holmes, A. B.; Towns, C. R.; O'Dell, R. MRS Bull. 2002, 27, 451455.Google Scholar
(3) Chen, C. H.; Shi, J., J, ; Tang, C. W. Macromol. Symp. 1997, 125, 148.Google Scholar
(4) Greiner, A. Polym. Adv. Technol. 1998, 9, 371389.Google Scholar
(5) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121128.Google Scholar
(6) Pardo, D. A.; Jabbour, G. E.; Peyghambarian, N. Adv. Mater. 2000, 12, 1249.Google Scholar
(7) Sellinger, A.; Laine, R. M. in U.S. Patent # 6, 517, 958; Canon Kabushiki Kaisha (Tokyo, JP): USA, 2003.Google Scholar
(8) Sellinger, A.; Laine, R. M. Chem. Mater. 1996, 8, 15921593.Google Scholar
(9) Zhang, C. X.; Bunning, T. J.; Laine, R. M. Chem. Mater. 2001, 13, 36533662.Google Scholar
(10) Saez, I. M.; Goodby, J. W.; Richardson, R. M. Chem. Eur. J. 2001, 7, 27582764.Google Scholar
(11) Sellinger, A.; Laine, R. M.; Chu, V.; Viney, C. J. Poly. Sci., Part A: Poly. Chem. 1994, 32, 30693089.Google Scholar
(12) Marsitzky, D.; Scott, J. C.; Chen, J. P.; Lee, V. Y.; Miller, R. D.; Setayesh, S.; Mullen, K. Adv. Mater. 2001, 13, 10961098.Google Scholar
(13) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 69897000.Google Scholar
(14) Tatsuya, I. In Patent Abstracts of Japan 30.04.98 JP 10120843; Fuji Photo Film Co.: Japan, 2000.Google Scholar
(15) Karabelas, K.; Hallberg, A. Tett. Lett. 1985, 26, 31313132.Google Scholar
(16) Yamashita, H.; Roan, B. L.; Tanaka, M. Chem. Lett. 1990, 21752176.Google Scholar
(17) Itami, K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei, T.; Yoshida, J. J. Am. Chem. Soc. 2001, 123, 1157711585.Google Scholar
(18) Lee, H. M.; Nolan, S. P. Org. Lett. 2000, 2, 20532055.Google Scholar
(19) Cacialli, F.; Wilson, J. S.; Michels, J. J.; Daniel, C.; Silva, C.; Friend, R. H.; Severin, N.; Samori, P.; Rabe, J.; O'Connell, M. J.; Taylor, P. N.; Anderson, H. L. Nature Mat. 2002, 1, 160164.Google Scholar
(20) Shen, Y.; Klein, M. W.; Jacobs, D. B.; Scott, J. C.; Malliaras, G. G. Phys. Rev. Lett. 2001, 86, 3867.Google Scholar