Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-13T02:02:57.615Z Has data issue: false hasContentIssue false

Solid-State NMR Study on Actinide Dioxides

Published online by Cambridge University Press:  24 May 2012

Yo Tokunaga
Affiliation:
Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki, 319-1195, Japan.
Hironori Sakai
Affiliation:
Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki, 319-1195, Japan.
Shinsaku Kambe
Affiliation:
Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki, 319-1195, Japan.
Hiroyuki Chudo
Affiliation:
Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki, 319-1195, Japan.
Masahiko Osaka
Affiliation:
Oarai Research and Development Center, Japan Atomic Energy Agency, Oarai, Higashi-Ibaraki, Ibaraki 311-1393, Japan
Shuhei Miwa
Affiliation:
Oarai Research and Development Center, Japan Atomic Energy Agency, Oarai, Higashi-Ibaraki, Ibaraki 311-1393, Japan
Tsuyoshi Nishi
Affiliation:
Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan.
Masami Nakada
Affiliation:
Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan.
Akinori Itoh
Affiliation:
Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan.
Yoshiya Homma
Affiliation:
Institute for Materials Research, Tohoku University, Oarai, Higashi-Ibaraki, Ibaraki 311-1313, Japan.
Get access

Abstract

Besides the importance of the actinide dioxide series as a nuclear fuel, the magnetic properties of these compounds at low temperatures are particularly interesting. Their surprisingly varied physical properties at low temperatures stimulate continuing interest for both theory and experiment. Recently, we have performed 17O-NMR studies for the first time on Pu and Amcontaining dioxide systems, (Pu1-xAmx)O2. For the x=0.09 sample, a temperature-dependent NMR line broadening has been observed at low temperatures. By comparing the experimental data with the results of NMR line simulations, we have estimated the effective moment of Am ions to be Peff=1.38 μB. The value suggests the 5f5 (Am4+) state of the Am ion in PuO2. For the x=1 (=AmO2) sample, on the other hand, our 17O-NMR data provide the first microscopic evidence for a phase transition at 8.5 K as a bulk property in this system. A spectrum with a triangular line shape indicates that the internal field is distributed very nearly randomly in the ordered state.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Westrum, E. F. Jr., Hatcher, J. B., and Osborne, D. W., J. Chem. Phys. 21, 419 (1953).Google Scholar
2. Osborne, D. W. and Westrum, E. F. Jr, J. Chem. Phys. 21, 1884 (1953).Google Scholar
3. Ross, J. W. and Lam, D. J., J. Appl. Phys. 38, 1451 (1967).Google Scholar
4. Erdös, P., Solt, G., Zolnierek, Z., Blaise, A., and Fournier, J. M., Physica 102B, 164 (1980).Google Scholar
5. Dunlap, B. D., Kalvius, G. M., Lam, D. J., and Brodsky, M.B., J. Phys. Chem. Solids 29, 1365 (1968).Google Scholar
6. Friedt, J. M., Litterst, F. J., and Rebizant, J., Phys. Rev. B 32, 257 (1985).Google Scholar
7. Cox, D. and Frazer, B., J. Phys. Chem. Solids 28, 1649 (1967).Google Scholar
8. Heaton, L., Müller, M., and Williams, J., J. Phys. Chem. Solids 28, 1651 (1967).Google Scholar
9. Boeuf, A., Caciuffo, R., Fournier, J., Manes, L., Rebizant, J., Rustichelli, F., Spirlet, J., and Wright, A., Phys. Status Solidi A 79, K1 (1983).Google Scholar
10. Santini, P. and Amoretti, G., Phys. Rev. Lett. 85, 2188 (2000).Google Scholar
11. Paixão, J. A., Detlefs, C., Longfield, M. J., Caciuffo, R., Santini, P., Bernhoeft, N., Rebizant, J., and Lander, G. H., Phys. Rev. Lett. 89, 187202 (2002).Google Scholar
12. Kubo, K. and Hotta, T., Phys. Rev. B 71, 140404(R) (2005).Google Scholar
13. Kubo, K. and Hotta, T., Phys. Rev. B 72, 132411 (2005).Google Scholar
14. Tokunaga, Y., Homma, Y., Kambe, S., Aoki, D., Sakai, H., Yamamoto, E., Nakamura, A., Shiokawa, Y., Walstedt, R.E., and Yasuoka, H., Phys. Rev. Lett. 94, 137209 (2005).Google Scholar
15. Tokunaga, Y., Aoki, D., Homma, Y., Kambe, S., Sakai, H., Ikeda, S., Fujimoto, T., Walstedt, R. E., Yasuoka, H., Yamamoto, E., Nakamura, A., and Shiokawa, Y., Phys. Rev. Lett. 97, 257601 (2006).Google Scholar
16. Santini, P., Carretta, S., Magnani, N., Amoretti, G., and Caciuffo, R., Phys. Rev. Lett. 97, 207203 (2006).Google Scholar
17. Magnani, N., Santini, P., Amoretti, G., and Caciuffo, R., Phys. Rev. B 71, 054405 (2005).Google Scholar
18. Santini, P., Carretta, S., Amoretti, G., Caciuffo, R., Magnani, N., and Lander, G. H., Rev. Mod. Phys. 81, 807 (2009).Google Scholar
19. Magnani, N., Carretta, S., Caciuffo, R., Santini, P., Amoretti, G., Hiess, A., Rebizant, J., and Lander, G. H., Phys. Rev. B 78, 104425 (2008).Google Scholar
20. Tokunaga, Y., Homma, Y., Kambe, S., Aoki, D., Sakai, H., Yamamoto, E., Nakamura, A., Shiokawa, Y., Walstedt, R. E., and Yasuoka, H., Physica B 359-361, 1096 (2005).Google Scholar
21. Tokunaga, Y., Sakai, H., Fujimoto, T., Kambe, S., Walstedt, R.E., Ikushima, K., Yasuoka, H., Aoki, D., Homma, Y., Haga, Y., Matsuda, T.D., Ikeda, S., Yamamoto, E., Nakamura, A., Shiokawa, Y., Nakajima, K., Arai, Y., Ōnuki, Y., J. Alloys Comp. 444-445, 241 (2007).Google Scholar
22. Tokunaga, Y., Aoki, D., Homma, Y., Kambe, S., Sakai, H., Ikeda, S., Fujimoto, T., Walstedt, R. E., Yasuoka, H., Shiokaw, Y., Yamamoto, E., and Nakamura, A., J. Mag. Mag. Mat. 310, 735 (2007).Google Scholar
23. Walstedt, R.E., Kambe, S., Tokunaga, Y. and Sakai, H., J. Phys. Soc. Jpn. 76, 072001 (2007).Google Scholar
24. Tokunaga, Y., Homma, Y., Kambe, S., Aoki, D., Sakai, H., Chudo, H., Ikushima, K., Yamamoto, E., Nakamura, A., Shiokawa, Y., Walstedt, R.E., and Yasuoka, H., J. Optoelectron. Adv. Mater. 10, 1663 (2008).Google Scholar
25. Ikushima, K., Yasuoka, H., Tsutsui, S., Saeki, M., Nasu, S., and Date, M., J. Phys. Soc. Jpn. 67, 65 (1998).Google Scholar
26. Ikushima, K., Tsutsui, S., Haga, Y., Yasuoka, H., Walstedt, R. E., Masaki, N. M., Nakamura, A., Nasu, S., and Ōnuki, Y., Phys. Rev. B 63, 104404 (2001).Google Scholar
27. Tokunaga, Y., Osaka, M., Kambe, S., Miwa, S., Sakai, H., Chudo, H., Homma, Y. and Shiokawa, Y., J. Nucl. Mater. 396, 107 (2010).Google Scholar
28. Karraker, D. G. J. Chem. Phys. 63, 3174 (1975).Google Scholar
29. Tokunaga, Y., Nishi, T., Kambe, S., Nakada, M., Itoh, A., Homma, Y., Sakai, H. and Chudo, H., J. Phys. Soc. Jpn. 79, 053705 (2010).Google Scholar
30. Osaka, M., Serizawa, H., Kato, M., Nakajima, K., Tachi, Y., Kitamura, R., Miwa, S., Iwai, T., Tanaka, K., Inoue, M., Arai, Y., J. Nucl. Sci. Technol. 44[3], 309 (2007).Google Scholar
31. Maschek, W., Chen, X., Delage, F., Fernandez-Carretero, A., Haas, D., Boccaccini, C. M., Rineiski, A., Smith, P., Sobolev, V., Thetford, R., Wallenius, J., Prog. Nucl. Energy 50, 333 (2008).Google Scholar
32. Kalvius, G. M., Ruby, S. L., Dunlap, B. D., Shenoy, G. K., Cohen, D., and Brodsky, M. B., Phys. Lett. 29B, 489 (1969).Google Scholar
33. Boeuf, A., Fournier, J. M., Gueugnon, J. F., Manes, L., Rebizant, J., and Rustichelli, F., J. Phys. 40, L335 (1979).Google Scholar
34. Kontani, M., Hioki, T. and Masuda, Y., J. Phys. Soc. Jpn. 39, 672 (1975).Google Scholar
35. Sakurai, H., Tsuboi, N., Kato, M., Yoshimura, K., Kosuge, K., Mitsuda, A., Mitamura, H., and Goto, T., Phys. Rev. B 66, 024428 (2002).Google Scholar
36. Michioka, C., Itoh, Y., Yoshimura, K., Furushima, Y., Maesato, M., Saito, G., Shirahata, T., Kibune, M., and Imakubo, T., Journal of Physics Conference Series 150, 042124 (2009).Google Scholar
37. Hotta, T., Phys. Rev. B 80, 024408 (2009).Google Scholar