Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T10:59:14.957Z Has data issue: false hasContentIssue false

Sol-Gel Synthesis of Rare Earth Aluminate Films as Buffer Layers for High Tc Superconducting Films

Published online by Cambridge University Press:  10 February 2011

David B. Beach
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6197, beachdb@ornl.gov
Catherine E. Vallet
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6197, beachdb@ornl.gov
Mariappan Paranthaman
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6197, beachdb@ornl.gov
Eliot D. Specht
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboaratory
Jonathan S. Morrell
Affiliation:
Department of Chemistry, University of Tennessee, Knoxville, TN
Ziling B. Xue
Affiliation:
Department of Chemistry, University of Tennessee, Knoxville, TN
Get access

Abstract

Cubic rare-earth aluminate perovskites of the general form REAIO3 have been identified as possible buffer layers for high current carrying cuprate superconductors deposited on roll-textured metals. This paper describes on-going research to develop solution routes which would avoid the use of slow and costly vacuum processing. Our research plan includes the development of an appropriate solution chemistry, studies of the crystallization behavior of powders under reducing and oxidizing conditions, deposition of polycrystalline films on silver substrates, deposition of epitaxial films on single-crystal oxide substrates, and deposition on roll textured nickel. The method is illustrated with the example of PrAlO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kirchner, H.R., Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D. M., Specht, E. D., He, Q., Paranthaman, M., Lee, D. F., Sales, B. C., List, F.A., and Feenstra, R., Appl. Phys. Lett., 71, 2029 (1997).Google Scholar
2. Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B, 41, 4038 (1990).Google Scholar
3. Wu, X.D., Foltyn, S.R., Arendt, P.N., Blumenthal, W.R., Campbell, L.H., Cotton, J.D., Coulter, J.Y., Hults, W.L., Malley, M.P., Safar, H.F., and Smith, J.L., Appl. Phys. Lett., 67, 2397 (1995).Google Scholar
4. Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B. C., and List, F.A., Science 274, 755 (1996).Google Scholar
5. Paranthaman, M., Goyal, A., List, F.A., Specht, E.D., Lee, D.F., Martin, P.M., He, Q., Christen, D.K., Norton, D. P., Budai, J.D., and Kroeger, D.M., Physica C, 275, 266 (1997).Google Scholar
6. Shoup, S.S., Paranthaman, M., Beach, D.B., Specht, E.D., Williams, R.K., J. Mater. Res. 12, 1017.Google Scholar