Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-7wlv9 Total loading time: 0.235 Render date: 2022-05-22T02:49:14.587Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Size Controlled Synthesis of Silicon Nanocrystals within Inverse Micelles

Published online by Cambridge University Press:  15 May 2013

Keith Linehan
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Hugh Doyle
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Get access

Abstract

Alkyl-terminated Si nanocrystals (NCs) are synthesized at room temperature by hydride reduction of SiCl4 within inverse micelles. Highly monodisperse Si NCs (2 – 6 nm) are produced by variation of the cationic quaternary ammonium salts used to form the inverse micelles. Transmission electron microscopy imaging confirms the NCs are highly crystalline, while FTIR spectra confirm that the NCs are passivated by covalent attachment of alkanes, with minimal surface oxidation. The photoluminescence intensity of the Si NCs exhibits an inverse relationship with the mean NC diameter, with a quantum yield of 12 % recorded for 2 nm NCs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mastronardi, M. L., Maier-Flaig, F., Faulkner, D., Henderson, E. J., Kübel, C., Lemmer, U. and Ozin, G. A., Nano Lett. 12, 337 (2012).CrossRef
Llansola Portolés, M. J., Pis Diez, R., Dell’arciprete, M. L., Caregnato, P., Romero, J. J., Mártire, D. O., Azzaroni, O., Ceolín, M. and Gonzalez, M. C., J. Phys. Chem. C. 116, 11315 (2012).CrossRef
Perraud, S., Quesnel, E., Parola, S., Barbé, J., Muffato, V., Faucherand, P., Morin, C., Jarolimek, K., Van Swaaij, R. A. C. M. M., Zeman, M., Richards, S., Kingsley, A., Doyle, H., Linehan, K., O'Brien, S., Povey, I. M., Pemble, M. E., Xie, L., Leifer, K., Makasheva, K. and Despax, B., Phys. Status Solidi A. DOI: 10.1002/pssa.201200533 (2012).
Kapaklis, V., Politis, C., Poulopoulos, P. and Schweiss, P., Appl. Phys. Lett. 87, 123114 (2005).CrossRef
Sato, S., Swihart, M. T., Chem. Mater. 18, 4083 (2006).CrossRef
Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).CrossRef
Holmes, J. D., Ziegler, K. J., Doty, R. C., Pell, L. E., Johnston, K. P. and Korgel, B. A., J. Am. Chem. Soc. 123, 3743 (2001).CrossRef
Shiohara, A., Prabakar, S., Faramus, A., Hsu, C.-Y., Lai, P.-S., Northcote, P. T. and Tilley, R. D., Nanoscale 3, 3364 (2011).CrossRef
Wilcoxon, J. P., Samara, G. A. and Provencio, P. N., Phys. Rev. B. 60, 2704 (1999).CrossRef
Tilley, R. D., Warner, J. H., Yamamoto, K., Matsui, I. and Fujimori, H., Chem. Commun. 1833 (2005).
Rosso-Vasic, M., De Cola, L. and Zuilhof, H., J. Phys. Chem. C. 113, 2235 (2009).CrossRef
Shiohara, A., Hanada, S., Prabakar, S., Fujioka, K., Lim, T. H., Yamamoto, K., Northcote, P. T. and Tilley, R. D., J. Am. Chem. Soc. 132, 248 (2010).CrossRef
Wang, J., Sun, S., Peng, F., Cao, L. and Sun, L., Chem. Commun. 47, 4941 (2011).CrossRef
Cheng, X., Gondosiswanto, R., Ciampi, S., Reece, P. J. and Gooding, J. J., Chem. Commun. 48, 11874 (2012).CrossRef
Williams, A. T. R., Winfield, S. A. and Miller, J. N., Analyst 108, 1067 (1983).CrossRef
Rosso-Vasic, M., Spruijt, E., Van Lagen, B., De Cola, L. and Zuilhof, H., Small 4, 1835 (2008).CrossRef
Warner, J. H., Rubinsztein-Dunlop, H. and Tilley, R. D., J. Phys. Chem. B. 109, 19064 (2005).CrossRef
Yang, C.-S., Bley, R. A., Kauzlarich, S. M., Lee, H. W. H. and Delgado, G. R., J. Am. Chem. Soc. 121, 5191 (1999).CrossRef
Veinot, J. G. C., Chem. Commun, 40, 4160 (2006).CrossRef
Yang, S., Li, W., Cao, B., Zeng, H. and Cai, W., J. Phys. Chem. C. 115, 21056 (2011).CrossRef
Lin, S.-W. and Chen, D.-H., Small 5, 72 (2009).CrossRef
Warner, J. H., Hoshino, A., Yamamoto, K. and Tilley, R. D., Angew. Chem., Int. Ed. 44, 4550 (2005).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Size Controlled Synthesis of Silicon Nanocrystals within Inverse Micelles
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Size Controlled Synthesis of Silicon Nanocrystals within Inverse Micelles
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Size Controlled Synthesis of Silicon Nanocrystals within Inverse Micelles
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *