Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T17:30:40.803Z Has data issue: false hasContentIssue false

Silicon-On-Insulator Mosfets Fabricated in Zone-Melting-Recrystallized Poly-Si Films on SiO2

Published online by Cambridge University Press:  15 February 2011

B­Y. Tsaur
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, 2173
M. W. Gels
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, 2173
John C. C. Fan
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, 2173
D. J. Silversmith
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, 2173
R. W. Mountain
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, 2173
Get access

Abstract

N- and p-channel enhancement-mode MOSFETs have been fabricated in Si films prepared by zone-melting recrystallization of poly-Si deposited on SiO2-coated Si substrates. The transistors exhibit high surface mobilities, in the range of 560–620 cm2/V−s for electrons and 200–240 cm2/V−s for holes, and low leakage currents of the order of 0.1 pA/μm (channel width). Uniform device performance with a yield exceeding 90% has been measured in tests of more than 100 devices. The interface between the Si film and the SiO2 layer on the substrate is characterized by an oxide charge density of 1–2 × 1011 cm−2 and a high surface carrier mobility. N-channel MOSFETs fabricated inSi films recrystallized on SiO2-coated fused quartz subtrates exhibit surface electron mobilities substantially higher than those of single-crystal Si devices because the films are under a large tensile stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geis, M. W., Flanders, D. C. and Smith, H. I., Appl. Phys. Lett. 35, 71 (1979).Google Scholar
2. Izumi, K., Doken, M. and Ariyoshi, H., Electron. Lett. 14, 593 (1978).Google Scholar
3. Imai, K., Solid-State Electron. 24, 159 (1981).CrossRefGoogle Scholar
4. For example, Gat, A., Gerzberg, L., Gibbons, J. F., Magee, T. J., Peng, J. and Hong, J. D., Appl. Phys. Lett. 33, 775 (1978).CrossRefGoogle Scholar
5. Maby, E. W., Geis, M. W., LeCoz, L. Y., Silversmith, D. J., Mountain, R. W. and Antoniadis, D. A., IEEE Electron. Device Lett. EDL2, 241 (1981).CrossRefGoogle Scholar
6. Geis, M. W., Smith, H. I., Tsaur, B-Y., Fan, J. C. C., Maby, E. W. and Antoniadis, D. A., Appl. Phys. Lett. (in press).Google Scholar
7. Tihanyi, J. and Schlotterer, H., IEEE Trans. Electron Devices ED26, 1017 (1979).Google Scholar
8. Sze, S. M., Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981) Chap. 1.Google Scholar
9. Leistiko, O., Grove, A. S. and Shah, C. T., IEEE Trans. Electron. Devices ED12, 248 (1965).CrossRefGoogle Scholar
10. Tsaur, B­Y., Fan, J. C. C. and Geis, M. W., Appl. Phys. Lett. (in press).Google Scholar