Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T12:13:00.760Z Has data issue: false hasContentIssue false

Silicon Transport in Lateral Silicide Growth of CrSi2

Published online by Cambridge University Press:  28 February 2011

L. R. Zheng
Affiliation:
Department of Materials Science andEngineering Cornell University, Ithaca, NY 14853
L. R. Doolittle
Affiliation:
Department of Materials Science andEngineering Cornell University, Ithaca, NY 14853
J. W. Mayer
Affiliation:
Department of Materials Science andEngineering Cornell University, Ithaca, NY 14853
Get access

Abstract

Silicide formation and growth are studied in three geometries: conventional planar thin films, lateral diffusion couples formed by depositing metal layers on Si islands, and device geometry couples formed by depositing metal on oxide-patterned Si substrates. The influence of impurities is studied by implanting arsenic and krypton into conventional and device geometry structures.

Here we present growth kinetics of CrSi2 where the presence of impurities has a strong influence. Si transport dominates in disilicide formation and leads to erosion of contacts around the periphery of oxide windows. Implantation of arsenic suppresses CrSi 2 formation; with krypton implantation, the growth kinetics shifts from linear to square-root in character. We attribute these results to impurity segregation at interfaces or grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bower, R. V. and Mayer, J. W., Appl. Phys. Lett. 20, 359 (1972).CrossRefGoogle Scholar
2. Okabayashi, H., Nagasawa, E., and Morimoti, M., International Electron Devices Meeting, San Francisco, CA, 1982, p. 556.Google Scholar
3. Zheng, L. R., Zingu, E., and Mayer, J. W., J. Appl. Phys., to be published.Google Scholar
4. Zheng, L. R., Ph. D. thesis, Coenell University, 1985.Google Scholar
5. Martinez, A., Esteve, D., Guivarc'h, A., Auvray, P., Henoc, P., and Pelous, G., Solid-State Electron., 23, 55 (1980).Google Scholar
6. Botha, A. P., Pretorius, R., and Kritzinger, S., Appl. Phys. Lett., 40, 412 (1982).Google Scholar
7. Olowolafe, J. O., Nicolet, M.-A., and Mayer, J. W., J. Appl. Phys., 47, 5182 (1976).Google Scholar
8. Gösele, U. and Tu, K. N., J. Appl. Phys., 53, 3252 (1982).Google Scholar
9. Zingu, E., Ph. D. Thesis, University of Cape Town, South Africa, 1985.Google Scholar
1O.Zheng, L. R., Zingu, E., and Mayer, J. W., in “Thin Films and Interfaces III”, eds. Baglin, J. E. E., Cambell, D. R., and Chu, W. K. (Elsevier, N. Y. 1984), p. 75.Google Scholar
11. Lien, C. D. and Nicolet, M.-A., J.Vac. Sci. Technol. B4, 739 (1984).Google Scholar
12. Zheng, L. R. and Mayer, J. W., Appl. Phys. Lett., 45, 636 (1984).Google Scholar
13. Zheng, L. R., Hung, L. S., Chen, S. H., and Mayer, J. W., J. Appl. Phys. 59, 1998 (1986).Google Scholar
14. Lau, C. K., Lee, Y. C., Scott, D. B., Bridges, J. M., Perma, J. M. and Davies, R. D., IEDM Technical Digest, 714 (1982).Google Scholar
15. Iyer, Subramanian S., Ting, Chung-Yu, and Fryer, Peter M., J. Electrochem. Soc., 132, 2240 (1985).Google Scholar