Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T19:51:40.925Z Has data issue: false hasContentIssue false

Silicon Nanocrystallite Light Emitting Devices Fabricated by Full Pulsed-Laser-Ablation Process

Published online by Cambridge University Press:  17 March 2011

Yuka Yamada
Affiliation:
Advanced Technology Research Laboratories, Matsushita Electric Industrial Co.Ltd., 3-10-1 Higashimita, Tama-ku, Kawasaki 214-8501, Japan
Toshiharu Makino
Affiliation:
Advanced Technology Research Laboratories, Matsushita Electric Industrial Co.Ltd., 3-10-1 Higashimita, Tama-ku, Kawasaki 214-8501, Japan
Nobuyasu Suzuki
Affiliation:
Advanced Technology Research Laboratories, Matsushita Electric Industrial Co.Ltd., 3-10-1 Higashimita, Tama-ku, Kawasaki 214-8501, Japan
Takehito Yoshida
Affiliation:
Advanced Technology Research Laboratories, Matsushita Electric Industrial Co.Ltd., 3-10-1 Higashimita, Tama-ku, Kawasaki 214-8501, Japan
Get access

Abstract

We have developed silicon (Si) nanocrystallite light-emitting devices synthesized by a novel integrated process in which a size-controlling unit of differential mobility analyzer (DMA) is combined to a nanocrystallite formation unit of pulsed laser ablation (PLA). The size-controlled Si nanocrystallites as active layers have been deposited on Si substrates, and have been covered with stoichiometric indium oxide (In2O3) thin films synthesized also by the PLA process. The electroluminescence (EL) spectra had a narrow bandwidth of 0.15 eV peaked at slightly higher energy region (1.17 eV) than the bulk Si energy gap (1.10 eV), at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For example, Light Emission in Silicon from Physics to Devices, ed. Lockwood, D. J. (Academic Press, 1998).Google Scholar
2. Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y. H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H., Phys. Rev., B52, 4910 (1995).Google Scholar
3. Vossen, J. L., Phys. Thin Films, 9, 1 (1977).Google Scholar
4. Chopra, K. L., Major, S., and Pandya, D. K., Thin Solid Films, 102, 1 (1983).Google Scholar
5. Pulsed Laser Deposition of Thin Films, eds. Chrisey, D. B. and Hubler, G. K. (Wiley, New York, 1994).Google Scholar
6. Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett., 68, 1772 (1996).Google Scholar
7. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S., Appl. Phys. Lett., 72, 2987 (1998).Google Scholar
8. Lowndes, D. H., Geohegan, D. B., Puretzky, A. A., Norton, D. P., and Rouleau, C. M., Science, 273, 898 (1996).Google Scholar
9. Suzuki, N., Makino, T., Yamada, Y., Yoshida, T., and Onari, S., Appl. Phys. Lett., 76, 1389 (2000).Google Scholar
10. Seto, T., Nakamoto, T., Okuyama, K., Adachi, M., Kuga, Y., and Takeuchi, K., J. Aerosol Sci., 28, 193 (1997).Google Scholar
11. Makino, T., Suzuki, N., Yamada, Y., Yoshida, T., Seto, T., and Aya, N., Appl. Phys., A69, S243 (1999).Google Scholar
12. Yamada, Y., Suzuki, N., Makino, T., and Yoshida, T., J. Vac. Sci. & Technol., A18, 83 (2000).Google Scholar
13. Yoshida, T., Yamada, Y., and Orii, T., J. Appl. Phys., 83, 5427 (1998).Google Scholar