Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T00:37:12.976Z Has data issue: false hasContentIssue false

Silicon Field Emitter Arrays Integrated with MOSFET Devices

Published online by Cambridge University Press:  17 March 2011

Ching-yin Hong
Affiliation:
Massachusetts Institute of Technology, Microsystems Technology Laboratories, Cambridge, MA 02142, U.S.A
Akintunde I. Akinwande
Affiliation:
Massachusetts Institute of Technology, Microsystems Technology Laboratories, Cambridge, MA 02142, U.S.A
Get access

Abstract

We report a metal oxide semiconductor field effect transistor (MOSFET) controlled field emission array (FEA) device. The device uses a lateral double diffused MOSFET (LD-MOSFET) to control electron supply to the surface. The FEAs were fabricated using isotropic etch of silicon, oxidation sharpening and chemical mechanical polishing. The LD-MOSFETs have a threshold voltage of 0.48V while the FEAs have a turn-on voltage of 28V. Analysis using the FN formulation indicates that a silicon tip radius of 11 nm would fit the FEA IV data. The tip radius from the electrical data is very close to the average tip radius of 10 nm obtained from transmission electron microscope (TEM) analysis. The IV characterization of the MOSFET/FEA demonstrated control of electron emission by the MOSFET gate voltage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hirano, T., Kanemaru, S., Tanoue, H. and Itoh, J., Jpn. J. Appl. Phys. Part 1, 34 (12B), 6907 (1995).Google Scholar
2. Kanemaru, S., Hirano, T., Tanoue, H. and Itoh, J., J. Vac. Sci. Technol. B 14(3), 1885 (1996).Google Scholar
3. Sarma, K. and Akinwande, A. I., Journal of VLSI Signal Processing Systems, 13, 165 (1996).Google Scholar
4. Temple, D., Materials Science and Engineering R24, 185 (1999).Google Scholar
5. Ding, M., Kim, H., and Akinwande, A. I., IEEE Electron Device Letters, 21 (2): 66 (2000).Google Scholar
6. Hirano, T., Kanemaru, S., and Itoh, J., Jpn. J. Appl. Phys. Part 2, 35 (7A), L861 (1996).Google Scholar
7. Koga, K., Kanemaru, S., Matsukawa, T., and Itoh, J., J. Vac. Sci. Technol. B 17(2), 588 (1999).Google Scholar
8. Fowler, R. H. and Nordheim, L. W., Proc. R. Soc. London A, 119, 173 (1928).Google Scholar
9. Ravi, T. S., Marcus, R. B., Liu, D., J. Vac. Sci. Technol., B 9(6) 2733 (1991).Google Scholar
10. Marcus, R. B., Ravi, T. S., Gmitter, T., Chin, K., Liu, D., Orvis, W. J., Ciarlo, D. R., Hunt, C. E., and Trujillo, J., Appl. Phys. Lett. 56(3), 236 (1990).Google Scholar
11. Tjaden, K., Chemical Mechanical Polishing Workshop, CMP Science and Application Session, ICMCTF International Conference on Metallurgical Coatings and Thin Films, San Diego, 1996 Google Scholar
12. Pflug, D. G., Ph.D. Thesis, MIT, 1996.Google Scholar
13. Spindt, C. A., Brodie, I., Humphrey, L., and Westerberg, E. R., J. Appl. Phys., 47, 5248 (1976).Google Scholar
14. Stratton, R., Proc. Phys. Soc. (London), B68, 746 (1955).Google Scholar