Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-16T13:20:27.991Z Has data issue: false hasContentIssue false

Segregation effects and bandgap engineering in InGaN quantum-well heterostructures

Published online by Cambridge University Press:  11 February 2011

Kirill A. Bulashevich
Affiliation:
Soft-Impact Ltd, P.O. Box 33, 194156 St. Petersburg, Russia
Sergey Yu. Karpov
Affiliation:
Soft-Impact Ltd, P.O. Box 33, 194156 St. Petersburg, Russia
Roman A. Talalaev
Affiliation:
Soft-Impact Ltd, P.O. Box 33, 194156 St. Petersburg, Russia
Igor Yu. Evstratov
Affiliation:
Soft-Impact Ltd, P.O. Box 33, 194156 St. Petersburg, Russia
Yuri N. Makarov
Affiliation:
STR Inc, P.O. Box 70604, Richmond, VA 23255, USA
Get access

Abstract

The analysis of In surface segregation and its impact on the composition profile and light emission spectra of the InGaN single quantum well heterostructures grown by Metalorganic Vapor Phase Epitaxy (MOVPE) is carried out by coupled solution of the Poisson and Schrödinger equations. Effective methods of controlling the composition profile, indium predeposition and temperature ramping during the cap layer growth are considered in terms of surface segregation model. General trends in spectra transformation upon the forward bias variation and their correlations with the quantum well electronic structure are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moon, Y.T., Kim, D.J., Song, K.M., Choi, C.J., Han, S.H., Seong, T.Y., and Park, S.J., J. Appl. Phys. 89, 6514 (2001).Google Scholar
2. Leem, S.-J., Kim, M.-H., Shin, J., Choi, Y. and Jeong, J., Jpn. J. Appl. Phys. 40, L371 (2001).Google Scholar
3. Park, J.S., Moon, Y.T., Kim, D.J., Oh, J.T., and Park, S.J., presentation at ICNS-4, Denver, 2001.Google Scholar
4. Kim, S., Lee, K., Park, K., Kim, C.-S., J. Cryst. Growth 247, 62 (2003).Google Scholar
5. Karpov, S.Yu., Talalaev, R.A., Evstratov, I. Yu., and Makarov, Yu.N., Phys. Stat. Sol. (a) 192, 417 (2002).Google Scholar
6. Talalaev, R.A., Karpov, S.Yu., Evstratov, I.Yu., and Makarov, Yu.N., accepted for publication in Phys. Stat. Sol., (2002).Google Scholar
7. Fiorentini, V., Bernardini, F. and Ambacher, O., Appl. Phys. Lett. 80, 1204 (2002).Google Scholar
8. Park, S.-H. and Chuang, S.-L., J. Appl. Phys. 87, 353 (2000).Google Scholar
9. Bougrov, V., Levinshtein, M., Rumyantsev, S., and Zubrilov, A., in Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, edited by Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S. (John Wiley & Sons, Inc., New York, 2001), Ch. 1–3.Google Scholar
10. Stepanov, S., Wang, W.N., Yavich, B.S., Bougrov, V., Rebane, Y.T., and Shreter, Y.G., MRS Internet J. Nitride Semicond. Res. 6, 6 (2001).Google Scholar
11. Kudryashow, V.E., Zolin, K.G., Turkin, A.N., Yunovich, A.E., Kovalev, A.N. and Manyakhin, F.I., Fiz. Tekn. Poluprovodn., 31, 3104 (1997) [Semiconductors, 31, 1123 (1997)].Google Scholar