Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T07:16:09.483Z Has data issue: false hasContentIssue false

Scanning Transmission X-Ray Microscopy Study of TiSe2/NbSe2 Superlattices

Published online by Cambridge University Press:  10 February 2011

Hyun-Joon Shin
Affiliation:
Pohang Accelerator Lab., POSTECH, Pohang, Korea
Kwangho Jeong
Affiliation:
Department of Physics, YonSei University, Seoul, Korea
David C. Johnson
Affiliation:
Materials Science Institute, University of Oregon, Eugene, OR 97403
Stephen D. Kevan
Affiliation:
Materials Science Institute, University of Oregon, Eugene, OR 97403
Myungkeun Noh
Affiliation:
Materials Science Institute, University of Oregon, Eugene, OR 97403
Tony Warwick
Affiliation:
Advanced Light Source, Berkeley, CA 94710
Get access

Abstract

TiSe2/NbSe2 superlattices crystallized from elementally modulated films have been studied with a Scanning Transmission X-ray Microscope (STXM) at the Advanced Light Source. The samples exhibited structures in the plane of the film with sizes of the order of one micrometer. The chemical sensitivity of STXM allowed us to infer that the titanium in the superlattice exists predominantly in microcrystalline TiSe2, but that these microcrystals are interspersed with elemental titanium inclusions. The STXM images reflect the interfacial nucleation between the constituent layers characteristic of the kinetic trapping method.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sano, N., Kato, H., and Chiko, S., Solid State Commun. 49, 123 (1984).Google Scholar
2. Hwang, J. C. N., Kastalsky, A., Stormer, H. L., and Keramidias, V. G., Appl. Phys. Lett. 44, 802 (1984).Google Scholar
3. Capasso, F., Physica 129B, 92 (1985).Google Scholar
4. Malik, R. J., Hayes, J. R., Capasso, F., Alavi, K., and Cho, A. Y., IEEE Trans. Electron Devices Lett. EDL-4, 383 (1983).Google Scholar
5. Klitzing, K. V., Dorda, G., and Pepper, M., Phys. Rev. Lett. 45, 494 (1980).Google Scholar
6. Tsui, D. C., Stormer, H. L., and Gossard, A. C., Phys. Rev. Lett. 48, 1559 (1982).Google Scholar
7. Noh, M., Thiel, J., and Johnson, D. C., Science 270, 1181 (1995).Google Scholar
8. Groot, F. M. F. de, J. Electron Spect. Rel. Phenomena 67, 529 (1994).Google Scholar
9. Laan, G. van der, Mythen, C. S., and Padmore, H. A., Europhysics Lett. 11, 67 (1990).Google Scholar
10. Groot, F. M. F. de, Fuggle, J. C., Thole, B. T., and Sawatzky, G. A., Phys. Rev. B 41, 928 (1990).Google Scholar
11. Leapman, R. D., Grunes, L. A., and Fejes, P. L., Phys. Rev. B 26, 614 (1982).Google Scholar
12. Leapman, R. D. and Grunes, L. A., Phys. Rev. Lett. 45, 397 (1980).Google Scholar
13. Okada, K. and Kotani, A., J. Electron Spectr. Rel. Phenomena 62, 131 (1993).Google Scholar
14. Zaanen, J., Sawatzky, G. A., Fink, J., Speier, W., and Fuggle, J. C., Phy. Rev. B 32, 4905 (1985).Google Scholar