Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-7frv5 Total loading time: 0.329 Render date: 2021-06-23T16:11:54.909Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Scanning Electron Microscopy and Surface Enhanced Raman Spectroscopy Correlation Studies of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Cancer Cells

Published online by Cambridge University Press:  25 March 2011

Ai Leen Koh
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford CA 94305, USA
Robert Sinclair
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford CA 94305, USA
Get access

Abstract

Composite Organic-Inorganic Nanoparticles (COINs) are a novel type of surface-enhanced Raman (SER) scattering nanoparticle formed by aggregating inorganic silver particles in the presence of a chosen organic molecule with a distinct Raman fingerprint. Binding between antibody-functionalized COINs and cells is detected primarily using Raman spectroscopy, which measures spectral shifts of the excitation light due to inelastic scattering. It has been suggested that the amount of antibody-conjugated COINs binding on cells will vary according to the antigen-expression levels in cells and will lead to changes in measured SERS intensities. COINs functionalized with antibodies CD54 and CD8 were conjugated to U937 and SupT1 cancer cells and investigated in this study. SERS intensity measurements were obtained from each of the four sample variants and normalized against control samples comprising non-antibody-functionalized COINs with cells. The amount of COINs binding on cells was determined using scanning electron microscopy (SEM) and correlated with the SER spectroscopy intensity. Although we found a positive correlation between the number of COINs binding to cells and their respective SERS intensity, this relationship is not one-to-one, nor does it appear to be linear. We demonstrated that SEM imaging and SER spectroscopy can complement each other to provide information about COINs binding onto cancer cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Lewin, M., Carlesso, N., Tung, C-H., Tang, X-W., Cory, D., Scadden, D. T., Weissleder, R., Nat. Biotechnol. 18, 410 (2000).CrossRefGoogle Scholar
2. Brigger, I., Dubernet, C. and Couvreur, P. Adv. Drug Delivery Rev. 54, 631 (2002).CrossRefGoogle Scholar
3. Liu, Z., Sun, X., Nakayama, N. and Dai, H., ACS Nano 1, 50 (2007).CrossRefGoogle Scholar
4. Loo, C., Lowery, A., Halas, N., West, J. and Drezek, R., Nano Lett. 5, 709 (2005).CrossRefGoogle Scholar
5. Brannon-Peppas, L., Blanchette, J. O., Adv. Drug Delivery Rev. 56, 1649 (2004).CrossRefGoogle Scholar
6. Bianco, A., Kostarelos, K., Partidos, C.D. and Prato, M., Chem Commun 571 (2005).CrossRefGoogle Scholar
7. Kam, N.W.S., O’Connell, M., Wisdom, J.A. and Dai, H., Proc Natl Acad Sci USA 102, 11600 (2005).CrossRefGoogle Scholar
8. Koh, A.L., Shachaf, C.M., Elchuri, S., Nolan, G.P. and Sinclair, R., Ultramicroscopy 109, 111 (2008).CrossRefGoogle Scholar
9. Su, X., Zhang, J., Sun, L., Koo, T-W., Chan, S., Sundararajan, N., Yamakawa, M. and Berlin, A. A., Nano Lett. 5, 49 (2004).CrossRefGoogle Scholar
10. Sun, L., Sung, K-B., Dentinger, C., Lutz, B., Nguyen, L., Zhang, J., Qin, H., Yamakawa, M., Cao, M., Lu, Y., Chmura, A.J., Zhu, J., Su, X., Berlin, A. A., Chan, S. and Knudsen, B., Nano Lett. 7, 351 (2007).CrossRefGoogle Scholar
11. Shachaf, C. M., Elchuri, S. V., Koh, A. L., Zhu, J., Nguyen, L. N., Mitchell, D. J., Zhang, J., Swartz, K. B., Sun, L., Chan, S., Sinclair, R. and Nolan, G. P., PLoS One 4(4) (2009) doi:10.1371/journal.pone.0005206CrossRefGoogle Scholar
12. Lutz, B., Dentiner, C., Sun, L., Nguyen, L., Zhang, J., Chmura, A.J., Allen, A., Chan, S. and Knudsen, B., J. Histochem. Cytochem. 56, 371 (2008).CrossRefGoogle Scholar
13. Koh, A.L., Shachaf, C.M., Elchuri, S., Nolan, G.P. and Sinclair, R., Microsc. Microanal. 14 (Suppl. 2), 670CD (2008).CrossRefGoogle Scholar
14. Long, D.A., The Raman Effect: A Unified Treatment of the Theory of Raman Scattering of Molecules, John Wiley and Sons Ltd, Chichester, UK, 2002.CrossRefGoogle Scholar
15. Pelletier, M.J., Analytical Applications of Raman Spectroscopy, Blackwell Science Ltd, MA, USA, 1999.Google Scholar
16. Laserna, J.J., Modern Techniques in Raman Spectroscopy, John Wiley and Sons Ltd, Chichester, UK, 1996.Google Scholar
17. Fleischmann, M., Hendra, P.J. and McQuillan, A.J., Chem. Phys. Lett. 26, 163 (1974).CrossRefGoogle Scholar
18. Nie, S. and Emory, S.R., Science 275, 1102 (1997).CrossRefGoogle Scholar
19. Ni, J., Lipert, R.J., Dawson, G.B. and Porter, M.D., Anal. Chem. 71, 4903 (1999).CrossRefGoogle Scholar
20. Grubisha, D.S., Lipert, R.J., Park, H-Y., Driskell, J. and Porter, M.D., Anal. Chem. 75, 5936 (2004).CrossRefGoogle Scholar
21. Freeman, R.G., Doering, W.E., Walton, I.D., Penn, S.G., Davis, G., Wong, F. and Natan, M.J., Proc. SPIE 5705, 114 (2005).CrossRefGoogle Scholar
22. Kim, J-H., Kim, J-S., Choi, H., Lee, S-M., Jun, B-H., Yu, K-N., Kuk, E., Kim, Y-K., Jeong, D.H., Cho, M-H. and Lee, Y-S., Anal. Chem. 78, 6967 (2006).CrossRefGoogle Scholar
23. Kneipp, J., Kneipp, H.. Rajadurai, A., Redmond, R.W. and Kneipp, K., J. Raman Spectrosc. 40, 1 (2009).CrossRefGoogle Scholar
24. Wang, Y., Li, D., Li, P., Wang, W., Ren, W., Dong, S., Wang, E., J. Phys. Chem. C 111, 16833 (2007).CrossRefGoogle Scholar
25. Kneipp, J., Kneipp, H., Wittig, B., Kneipp, K., Nano Lett. 7, 2819 (2007).CrossRefGoogle Scholar
26. Cao, Y. W. C., Jin, R. C., Mirkin, C. A., Science 297, 1536 (2002).CrossRefGoogle Scholar
27. Cao, Y. C., Jin, R. C., Nam, J. M., Thaxton, C. S., Mirkin, C. A., Am, J.. Chem. Soc. 125, 14676 (2003).CrossRefGoogle Scholar
28. Qian, X., Peng, X-H., Ansari, D. O., Yin-Goen, Q., Chen, G. Z., M Shin, D., Yang, L., Young, A. N., Wang, M. D and Nie, S., Nat. Biotechnol. 26, 83 (2008).CrossRefGoogle Scholar
29. Tian, Z-Q., Yang, Z-L., Ren, B., Li, J-F., Zhang, Y., Lin, X-F., Hu, J-W. and Wu, D-Y., Faraday Discuss. 132, 159 (2006).CrossRefGoogle Scholar
30. Elechiguerra, J.L., Reyes-Gasga, J. and Yacaman, M.J., J. Mater. Chem. 16, 3906 (2006) .CrossRefGoogle Scholar
31. Sabur, A., Havel, M. and Gogotsi, Y., J. Raman Spectrosc. 39, 61 (2008).CrossRefGoogle Scholar
32. Sztainbuch, I.W., J. Chem. Phys. 125, 124707 (2006).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Scanning Electron Microscopy and Surface Enhanced Raman Spectroscopy Correlation Studies of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Cancer Cells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Scanning Electron Microscopy and Surface Enhanced Raman Spectroscopy Correlation Studies of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Cancer Cells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Scanning Electron Microscopy and Surface Enhanced Raman Spectroscopy Correlation Studies of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Cancer Cells
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *