Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T00:33:22.526Z Has data issue: false hasContentIssue false

Scaling of Hafnium-based High-k Dielectrics

Published online by Cambridge University Press:  01 February 2011

Dina H. Triyoso
Affiliation:
dina.triyoso@freescale.com, Freescale Semiconductor Inc, Technology Solutions Organization (TSO), 3501 Ed Bluestein Blvd, MD:K10, Austin, TX, 78721, United States, 512-933-5912, 512-933-6962
Rama I. Hegde
Affiliation:
rama.hegde@freescale.com, Freescale Semiconductor Inc, Technology Solutions Organization (TSO), 3501 Ed Bluestein Blvd, Austin, TX, 78721, United States
Rich Gregory
Affiliation:
rich.gregory@freescale.com, Freescale Semiconductor Inc, Wireless and Packaging Systems Laboratory (WPSL), 2100 E. Elliot Rd., Tempe, AZ, 85284, United States
David C. Gilmer
Affiliation:
david.gilmer@freescale.com, Freescale Semiconductor Inc, Technology Solutions Organization (TSO), 3501 Ed Bluestein Blvd, Austin, TX, 78721, United States
James K. Schaeffer
Affiliation:
jamie.schaeffer@freescale.com, Freescale Semiconductor Inc, Technology Solutions Organization (TSO), 3501 Ed Bluestein Blvd, Austin, TX, 78721, United States
Srikanth B. Samavedam
Affiliation:
sri.samavedam@freescale.com, Freescale Semiconductor Inc, Technology Solutions Organization (TSO), 3501 Ed Bluestein Blvd, Austin, TX, 78721, United States
Vidya Kaushik
Affiliation:
vidya.kaushik@freescale.com, Freescale Semiconductor Inc, Technology Solutions Organization (TSO), 3501 Ed Bluestein Blvd, Austin, TX, 78721, United States
Nevine Rochat
Affiliation:
nevine.rochat@cea.fr, CEA-LETI, MINATEC, 17 rue des Martyrs, Grenoble, 38054, France
Get access

Abstract

In this paper, various approaches to extend scalability of Hafnium-based dielectrics are reported. Among the three crystal phases of HfO2 (monoclinic, cubic and tetragonal), the tetragonal phase has been reported to have the highest dielectric constant. Tetragonal phase stabilization by crystallizing the thin HfO2 using a metal capping layer and by adding zirconium is demonstrated. The microstructure, morphology, optical properties and impurities of HfxZr1-xO2 dielectrics (for 0<x<1) are discussed. Subtle but important modification to high-k / Si interface characteristics resulting from addition of Zr into HfO2 is reported. To further boost the dielectric constant of hafnium-based dielectrics, incorporation of TiO2, which has been reported to have high dielectric constant, is explored. HfxZr1-xO2/TiO2 bilayer films were fabricated. 30 Å TiO2 films were deposited on a 5, 8, 12 or 15 Å HfxZr1-xO2 underlayer to determine the minimum thickness needed to maintain good thermal stability with Si substrate. CV and IV results indicated that 12-15 Å is the optimal thickness range for the HfxZr1-xO2 underlayer. A dielectric constant as high as 150 for TiO2 layer is extracted from TiO2 thickness series deposited on12 Å HfxZr1-xO2 underlayer. In addition to increasing the k-value of Hafnium-based dielectrics, it is important that the threshold voltage of these high-k devices is low. Here we report the use of thin Al2O3 capping layers to modulate PMOS threshold voltages. About 100 mV reduction in threshold voltage is achieved by capping HfO2 with a 5Å Al2O3 film. Finally, dielectric scaling by modifying the Si/high-k interfacial layer is attempted. Nitrogen incorporation into HfxZr1-xO2 is shown to be a simple and effective method to lower the capacitance equivalent thickness (CET) of Hafnium-based dielectrics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tseng, H.-H, Ramon, M.E, Hebert, L., Tobin, P.J., Triyoso, D., Grant, J. M., Jiang, Z. X., Roan, D., Samavedam, S. B., Gilmer, D. C., Kalpat, S., Hobbs, C., Taylor, W.J., Adetutu, O., White, B.E., IEEE International Electron Devices Meeting, p.4.1.1 (2003).Google Scholar
2. Triyoso, D.H., Tobin, P.J., White, B.E. Jr ., Gregory, R., and Wang, X.-D., Appl. Phys. Lett. 89 132903 (2006).Google Scholar
3. Rochat, N., Chabli, A., Bertin, F., Olivier, M., Vergnaud, C., and Mur, P., J. Appl. Phys. 91 5029 (2002).Google Scholar
4. Gilmer, D.C., Schaeffer, J.K, Taylor, W.J, Spencer, G., Triyoso, D.H., Raymond, M., Roan, D., Smith, J., Capasso, C., Hegde, R.I., and Samavedam, S.B., Proceedings of the 36th European Solid-State Device Research Conference, p.351 (2006).Google Scholar
5. Zhao, X. and Vanderbilt, D., Phys. Rev. B, 65 23106 (2002).Google Scholar
6. Zhao, X. and Vanderbilt, D., Phys. Rev. B, 65 075105 (2002).Google Scholar
7. Triyoso, D.H., Hegde, R.I., Schaeffer, J.K., Roan, D., Tobin, P.J., Samavedam, S.B., White, B.E., Gregory, R., and Wang, X.-D., Appl. Phys. Lett. 88, 222901 (2006).Google Scholar
8. Triyoso, D.H., Hegde, R.I., Schaeffer, J.K, Gregory, R., Wang, X.-D., Canonico, M., Roan, D., Hebert, E.A., Kim, K., Jiang, J., Rai, R., Kaushik, V., Rochat, N., and Samavedam, S.B. (submitted to J. Vac. Sci. and Tech.).Google Scholar
9. Hegde, R.I., Triyoso, D.H., Tobin, P.J., Kalpat, S., Ramon, M.E., Tseng, H.-H., Schaeffer, J.K., Luckowski, E., Taylor, W.J., Capasso, C.C., Gilmer, D.C., Moosa, M., Haggag, A., Raymond, M., Roan, D., Nguyen, J., La, L.B., Hebert, E., Cotton, R., Wang, X-D., Zollner, S., Gregory, R., Werho, D., Rai, R. S., Fonseca, L., Stoker, M., Tracy, C., Chan, B.W., Chiu, Y.H., and White, B.E. Jr, IEEE International Electron Devices Meeting, p.39 (2005).Google Scholar
10. Hegde, R.I., Triyoso, D.H., Kalpat, S., Samavedam, S.B., Schaeffer, J.K., Luckowski, E., Taylor, W.J., Capasso, C., Gilmer, D.C., Raymond, M., Roan, D., Nguyen, J., La, L., Hebert, E., Wang, X-D., Gregory, R., Rai, R. S., Jiang, J., Luo, T.Y., and White, B.E. Jr, International Conference on Solid State Devices and Materials, p.1098 (2006).Google Scholar
11. Taylor, W.J. Jr ., Capasso, C., Min, B., Winstead, B., Verret, E., Loiko, K., Gilmer, D., Hegde, R.I., Schaeffer, J., Luckowski, E., Martinez, A., Raymond, M., Happ, C., Triyoso, D., Kalpat, S., Haggag, A., Roan, D., Nguyen, J.-Y., La, L. B., Hebert, L., Smith, J., Jovanovic, D., Foisy, M., Samavedam, S. B., Cave, N., White, B.E. Jr ., Venkatesan, S., IEEE International Electron Devices Meeting (2006).Google Scholar
12. Triyoso, D.H., Hegde, R.I., Zollner, S., Ramon, M.E., Kalpat, S., Gregory, R., Wang, X.-D., Jiang, J., Raymond, M., Rai, R., Werho, D., Roan, D, White, B.E. Jr, Tobin, P.J., J. App. Phys. 98 54104 (2005).Google Scholar
13. Triyoso, D.H., Hegde, R.I., Wang, X.-D., Stoker, M.W., Rai, R., Ramon, M.E., White, B.E. Jr, Tobin, P.J., J.of Elec.Soc. 153 G834 (2006).Google Scholar
14. Rausch, N. and Burte, E.P., J. Elec. Soc. 140 145 (1993).Google Scholar
15. The OxideHandbook, Samsonov, G.V., Editor, p. 316, Plenum, New York (1973).Google Scholar
16. Jogi, I., Kukli, K., Aarik, J., Aidla, A. and Lu, J., Materials Science in Semiconductor Processing, 9 1084 (2006).Google Scholar
17. Huang, A.P., Chu, P.K., Wang, L., Cheung, W.Y., Xu, J.B., and Wang, S.P., J. Mater. Res. 21 844 (2006).Google Scholar
18. 'Sullivan, B.J., Kaushik, V.S., Ragnarsson, L.-Å., Onsia, B., Hoornick, N.V., Rohr, E., Gendt, S. De, and Heyns, M., IEEE Electron Device Lett., 27, p. 546 (2006).Google Scholar
19. Wen, H.C., Alshareef, H.N., Luan, H., Choi, K., Lysaght, P., Harris, H.R., Huffman, C., Brown, G.A., Bersuker, G., Zeitzoff, P., Huff, H., Majhi, P., Lee, B. H., Symposium on VLSI Technology, p.46 (2005).Google Scholar
20. Narayanan, V., Paruchuri, V.K., Bojarczuk, N.A., Linder, B.P., Doris, B, Kim, Y.H., Zafar, S., Stathis, J., Brown, S., Arnold, J., Copel, M., Steen, M., Cartier, E., Callegari, A., Jamison, P., Locquet, J.-P., Lacey, D.L., Wang, Y., Batson, P.E., Ronshei, P., Jammy, R., Chudzik, M.P., Ieong, M., Guha, S., Shahidi, G., Chen, T.C., Symposium on VLSI Technology, p.2 (2006).Google Scholar
21. Lee, K.L., Frank, M.M., Paruchuri, V., Cartier, E., Linder, B., Bojarczuk, N., Wang, X., Rubino, J., Steen, M., Kozlowski, P., Newbury, J., Sikorski, E., Flaitz, P., Gribelyuk, M., Jamison, P., Singco, G., Narayanan, V., Zafar, S., Guha, S., Oldiges, P., Jammy, R., Ieong, M., Symposium on VLSI Technology, p.2 (2005).Google Scholar
22. Hegde, R.I. et al., (manuscript in preparation).Google Scholar