Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T15:49:56.382Z Has data issue: false hasContentIssue false

Rutherford Backscattering and Photoluminescence Studies of Erbium Implanted GaAs

Published online by Cambridge University Press:  10 February 2011

M. O. Henry
Affiliation:
School of Physical Sciences, Dublin City University, Dublin 9. Ireland.
E. Alves
Affiliation:
Departamento de Fisica, Instituto Techológico e Nuclear, Estrada Nacional 10, Sacavém, Portugal
J. C. Soares
Affiliation:
Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1699 Lisboa, Portugal
R. Gwilliam
Affiliation:
Department of Electrical and Electronic Enginerring, University of Surrey, Guildford, GU2 5XH, U.K.
B. J. Sealy
Affiliation:
Department of Electrical and Electronic Enginerring, University of Surrey, Guildford, GU2 5XH, U.K.
K Freitag
Affiliation:
Institut für Strahlen und Kemphysik der Universität Bonn, D-53115 Bonn, Germany
R. Vianden
Affiliation:
Institut für Strahlen und Kemphysik der Universität Bonn, D-53115 Bonn, Germany
D. Stievenard
Affiliation:
Institut Supérieur d'Electronique du Nord, 41 Boulevard Vauban, 59046 Lille, France
Get access

Extract

The results of parallel RBS and photoluminescence studies of erbium implanted GaAs are presented. Low dose implantations do not produce any significant PL signals, and the dose must be in the range le14 to le15 /cm2 in order that Er related emission dominates in the PL spectrum. A comprehensive analysis of the effects of coimplantation with oxygen on the Er luminescence is reported and the data are compared to those of GaAs:Er and AIGaAs:Er samples grown by MBE. The evidence indicates that, at high doses, ErAs precipitates are formed unless oxygen is co-implanted, and that the Er atoms which produce the luminescence occupy substitutional Ga sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Wagner, J., Muller, H.D. and Smith, R.S.. J.Appl. Phys. 61 (1994) 4171.Google Scholar
2. Seghier, D., Benyattou, T., Kalboussi, A., Moneger, S., Marrakchi, G., Guillot, S., Lambert, B. and Guivarch, A.. J. Appl. Phys. 75 (1987) 4877.Google Scholar
3. Takahei, K., Whitney, Peter S., Nakagonne, Horoshi, Uwai, Kunihiko. J. Appl. Phys. 65 (1989) 1257.Google Scholar
4. Nakata, Joyoji, Taniguchi, Moriyuki, Takahei, K.. Appl. Phys. Lett. 61(1992) 2665.Google Scholar
5. Pomrenke, Gernot S., Ennen, H. and Haydl, W.. J. Appl. Phys. 59(1986) 601.Google Scholar
6. Favennec, P.N., Haridon, H.L., Moutonnet, D., Salvi, M., Gauneau, M. and Papadopoulo, A.C..Inst Physi. Conf. Ser. 106 (1989) 333.Google Scholar
7. Kozanecki, A., Chang, M., Jeynes, C., Sealy, B. and Homewood, K.. Solid State Commun. 78 (1991) 763.Google Scholar
8. Alves, E., daSilva, M.F., Melo, A.A., Soares, J.C., van den Hoven, G.N., Polman, A. Evans, K.R. and Jones, C.R.. Mat. Res. Soc. Symp. Proc. 301 (1993) 175.Google Scholar
9. Poole, I., Singer, K.E. and Peaker, A.R.. J. Cryst. Growth 121 (1992) 121.Google Scholar
10. Takahei, K., Taguchi, A., Horikoshi, Y. and Nakata, J.. J. Appl. Phys. 76 (1994) 4332.Google Scholar
11. Elsaesser, D.W., Yeo, Y,K., Hengehold, R.L., Evans, K.R. and Pedrotti, F.L.. J. Appl. Phys. 77 (1995) 3919.Google Scholar
12. Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eagleshamn, D.J., Fitzgerald, E.A., Xie, Y.-H., Poate, J.M., and Kimmerling, L.C., J. Appl. Phys. 70 (1991) 2672.Google Scholar
13. Smulders, P.J.M. and Boerma, D.O.. Nucl. Instr. and Meth. B29 (1987) 471.Google Scholar